Applied Partial Differential Equations with Fourier Series and Boundary Value Problems Pearson New International Edition

Author: Richard Haberman
Publisher: Pearson Higher Ed
ISBN: 9781292053394
Release Date: 2013-10-03
Genre: Mathematics

This text emphasizes the physical interpretation of mathematical solutions and introduces applied mathematics while presenting differential equations. Coverage includes Fourier series, orthogonal functions, boundary value problems, Green’s functions, and transform methods. This text is ideal for students in science, engineering, and applied mathematics.

Partial Differential Equations with Fourier Series and Boundary Value Problems

Author: Nakhle H. Asmar
Publisher: Courier Dover Publications
ISBN: 9780486820835
Release Date: 2017-03-23
Genre: Mathematics

This text provides an introduction to partial differential equations and boundary value problems, including Fourier series. The treatment offers students a smooth transition from a course in elementary ordinary differential equations to more advanced topics in a first course in partial differential equations. This widely adopted and successful book also serves as a valuable reference for engineers and other professionals. The approach emphasizes applications, with particular stress on physics and engineering applications. Rich in proofs and examples, the treatment features many exercises in each section. Relevant Mathematica files are available for download from author Nakhlé Asmar's website; however, the book is completely usable without computer access. The Students' Solutions Manual can be downloaded for free from the Dover website, and the Instructor's Solutions Manual is available upon request for professors and potential teachers. The text is suitable for undergraduates in mathematics, physics, engineering, and other fields who have completed a course in ordinary differential equations.

Fourier Series and Boundary Value Problems

Author: James Ward Brown
Publisher: McGraw-Hill Science Engineering
ISBN: 0072325704
Release Date: 2001
Genre: Mathematics

Published by McGraw-Hill since its first edition in 1941, this classic text is an introduction to Fourier series and their applications to boundary value problems in partial differential equations of engineering and physics. It will primarily be used by mathematics students with a background in ordinary differential equations and advanced calculus. There are two main objectives of this text. The first is to introduce the concept of orthogonal sets of functions and representations of arbitrary functions in series of functions from such sets. The second is a clear presentation of the classical method of separation of variables used in solving boundary value problems with the aid of those representations.

Partial Differential Equations and Boundary value Problems with Applications

Author: Mark A. Pinsky
Publisher: McGraw-Hill Science, Engineering & Mathematics
ISBN: UOM:39015051290214
Release Date: 1998
Genre: Mathematics

Designed for the junior- and senior-level course in Partial Differential Equations, this new edition builds upon the solid strengths of the previous editions and has been revised to provide a more patient development of the core concepts. The material has been divided into three parts covering preliminary material, basic concepts, and advanced topics. Parts One and Two have also been reorganized and refined to provide more complete examples to help students master the content. The Sturm-Louiville Theory has been placed at the end of Chapter One and the coverage of infinite series and ordinary differential equations has been moved to an appendix.

Differential Equations with Boundary Value Problems

Author: Dennis Zill
Publisher: Cengage Learning
ISBN: 9781111827069
Release Date: 2012-03-15
Genre: Mathematics

DIFFERENTIAL EQUATIONS WITH BOUNDARY-VALUE PROBLEMS, 8th Edition strikes a balance between the analytical, qualitative, and quantitative approaches to the study of differential equations. This proven and accessible text speaks to beginning engineering and math students through a wealth of pedagogical aids, including an abundance of examples, explanations, Remarks boxes, definitions, and group projects. Written in a straightforward, readable, and helpful style, the book provides a thorough treatment of boundary-value problems and partial differential equations. Important Notice: Media content referenced within the product description or the product text may not be available in the ebook version.

Applied Partial Differential Equations

Author: J David Logan
Publisher: Springer
ISBN: 9783319124933
Release Date: 2014-12-05
Genre: Mathematics

This textbook is for the standard, one-semester, junior-senior course that often goes by the title "Elementary Partial Differential Equations" or "Boundary Value Problems". The audience consists of students in mathematics, engineering, and the sciences. The topics include derivations of some of the standard models of mathematical physics and methods for solving those equations on unbounded and bounded domains, and applications of PDE's to biology. The text differs from other texts in its brevity; yet it provides coverage of the main topics usually studied in the standard course, as well as an introduction to using computer algebra packages to solve and understand partial differential equations. For the 3rd edition the section on numerical methods has been considerably expanded to reflect their central role in PDE's. A treatment of the finite element method has been included and the code for numerical calculations is now written for MATLAB. Nonetheless the brevity of the text has been maintained. To further aid the reader in mastering the material and using the book, the clarity of the exercises has been improved, more routine exercises have been included, and the entire text has been visually reformatted to improve readability.

Differential Equations with Boundary Value Problems

Author: John C. Polking
Publisher: Prentice Hall
ISBN: 0130911062
Release Date: 2002
Genre: Mathematics

Designed for one- or two-term introductory courses in differential equations for engineering, mathematics, biology, and finance majors, this text aims to strike a balance between the traditional and the modern. It combines the traditional material with a modern systems emphasis, offering flexibility of use.

Introduction to Ordinary Differential Equations

Author: Albert L. Rabenstein
Publisher: Academic Press
ISBN: 9781483226224
Release Date: 2014-05-12
Genre: Mathematics

Introduction to Ordinary Differential Equations is a 12-chapter text that describes useful elementary methods of finding solutions using ordinary differential equations. This book starts with an introduction to the properties and complex variable of linear differential equations. Considerable chapters covered topics that are of particular interest in applications, including Laplace transforms, eigenvalue problems, special functions, Fourier series, and boundary-value problems of mathematical physics. Other chapters are devoted to some topics that are not directly concerned with finding solutions, and that should be of interest to the mathematics major, such as the theorems about the existence and uniqueness of solutions. The final chapters discuss the stability of critical points of plane autonomous systems and the results about the existence of periodic solutions of nonlinear equations. This book is great use to mathematicians, physicists, and undergraduate students of engineering and the science who are interested in applications of differential equation.

Partielle Differentialgleichungen

Author: Walter A. Strauss
Publisher: Springer-Verlag
ISBN: 9783663124863
Release Date: 2013-08-13
Genre: Mathematics

Dieses Buch ist eine umfassende Einführung in die klassischen Lösungsmethoden partieller Differentialgleichungen. Es wendet sich an Leser mit Kenntnissen aus einem viersemestrigen Grundstudium der Mathematik (und Physik) und legt seinen Schwerpunkt auf die explizite Darstellung der Lösungen. Es ist deshalb besonders auch für Anwender (Physiker, Ingenieure) sowie für Nichtspezialisten, die die Methoden der mathematischen Physik kennenlernen wollen, interessant. Durch die große Anzahl von Beispielen und Übungsaufgaben eignet es sich gut zum Gebrauch neben Vorlesungen sowie zum Selbststudium.

Fourier Series and Numerical Methods for Partial Differential Equations

Author: Richard Bernatz
Publisher: John Wiley & Sons
ISBN: 0470651377
Release Date: 2010-07-30
Genre: Mathematics

The importance of partial differential equations (PDEs) in modeling phenomena in engineering as well as in the physical, natural, and social sciences is well known by students and practitioners in these fields. Striking a balance between theory and applications, Fourier Series and Numerical Methods for Partial Differential Equations presents an introduction to the analytical and numerical methods that are essential for working with partial differential equations. Combining methodologies from calculus, introductory linear algebra, and ordinary differential equations (ODEs), the book strengthens and extends readers' knowledge of the power of linear spaces and linear transformations for purposes of understanding and solving a wide range of PDEs. The book begins with an introduction to the general terminology and topics related to PDEs, including the notion of initial and boundary value problems and also various solution techniques. Subsequent chapters explore: The solution process for Sturm-Liouville boundary value ODE problems and a Fourier series representation of the solution of initial boundary value problems in PDEs The concept of completeness, which introduces readers to Hilbert spaces The application of Laplace transforms and Duhamel's theorem to solve time-dependent boundary conditions The finite element method, using finite dimensional subspaces The finite analytic method with applications of the Fourier series methodology to linear version of non-linear PDEs Throughout the book, the author incorporates his own class-tested material, ensuring an accessible and easy-to-follow presentation that helps readers connect presented objectives with relevant applications to their own work. Maple is used throughout to solve many exercises, and a related Web site features Maple worksheets for readers to use when working with the book's one- and multi-dimensional problems. Fourier Series and Numerical Methods for Partial Differential Equations is an ideal book for courses on applied mathematics and partial differential equations at the upper-undergraduate and graduate levels. It is also a reliable resource for researchers and practitioners in the fields of mathematics, science, and engineering who work with mathematical modeling of physical phenomena, including diffusion and wave aspects.

A First Course in Partial Differential Equations

Author:
Publisher: World Scientific Publishing Company
ISBN: 9789813226456
Release Date: 2017-10-30
Genre: Mathematics

Resources for instructors who adopt this textbook:Lecture SlidesInstructors' Manual (complete solutions and supporting work)Students' Manual (final answers to computational exercises) Kindly send your requests to [email protected] This textbook gives an introduction to Partial Differential Equations (PDEs), for any reader wishing to learn and understand the basic concepts, theory, and solution techniques of elementary PDEs. The only prerequisite is an undergraduate course in Ordinary Differential Equations. This work contains a comprehensive treatment of the standard second-order linear PDEs, the heat equation, wave equation, and Laplace's equation. First-order and some common nonlinear PDEs arising in the physical and life sciences, with their solutions, are also covered. This textbook includes an introduction to Fourier series and their properties, an introduction to regular Sturm–Liouville boundary value problems, special functions of mathematical physics, a treatment of nonhomogeneous equations and boundary conditions using methods such as Duhamel's principle, and an introduction to the finite difference technique for the numerical approximation of solutions. All results have been rigorously justified or precise references to justifications in more advanced sources have been cited. Appendices providing a background in complex analysis and linear algebra are also included for readers with limited prior exposure to those subjects. The textbook includes material from which instructors could create a one- or two-semester course in PDEs. Students may also study this material in preparation for a graduate school (masters or doctoral) course in PDEs. The lecture slides, instructors' manual and students' manual is available upon request for all instructors who adopt this book as a course text. Please send your request to [email protected]