Partial Differential Equations

Author: Thomas Hillen
Publisher: John Wiley & Sons
ISBN: 9781118438435
Release Date: 2014-08-21
Genre: Mathematics

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Partial Differential Equations

Author: Thomas Hillen
Publisher: John Wiley & Sons
ISBN: 1118063309
Release Date: 2012-10-09
Genre: Mathematics

"Combining over 28 years of teaching experience, the authors present a PDE text that is accessible to all students--regardless of their background or mathematical sophistication. The book provides over 150 completely worked problems with solutions and commentaries for both linear partial differential equations and boundary value problems with applications in engineering and biology. Topics covered include a classification of PDEs, heat equation, wave equation, Laplace's equation, separation of variables, Fourier series, classical PDEs, Sturm-Liouville problems, special functions, transform methods, and the method of characteristics for first order PDEs"--

Partial Differential Equations

Author: Thomas Hillen
Publisher: John Wiley & Sons
ISBN: 9781118441466
Release Date: 2014-08-21
Genre: Mathematics

Uniquely provides fully solved problems for linear partial differential equations and boundary value problems Partial Differential Equations: Theory and Completely Solved Problems utilizes real-world physical models alongside essential theoretical concepts. With extensive examples, the book guides readers through the use of Partial Differential Equations (PDEs) for successfully solving and modeling phenomena in engineering, biology, and the applied sciences. The book focuses exclusively on linear PDEs and how they can be solved using the separation of variables technique. The authors begin by describing functions and their partial derivatives while also defining the concepts of elliptic, parabolic, and hyperbolic PDEs. Following an introduction to basic theory, subsequent chapters explore key topics including: • Classification of second-order linear PDEs • Derivation of heat, wave, and Laplace’s equations • Fourier series • Separation of variables • Sturm-Liouville theory • Fourier transforms Each chapter concludes with summaries that outline key concepts. Readers are provided the opportunity to test their comprehension of the presented material through numerous problems, ranked by their level of complexity, and a related website features supplemental data and resources. Extensively class-tested to ensure an accessible presentation, Partial Differential Equations is an excellent book for engineering, mathematics, and applied science courses on the topic at the upper-undergraduate and graduate levels.

Linear Partial Differential Equations and Fourier Theory

Author: Marcus Pivato
Publisher: Cambridge University Press
ISBN: 9780521199704
Release Date: 2010-01-07
Genre: Mathematics

This highly visual introductory textbook provides a rigorous mathematical foundation for all solution methods and reinforces ties to physical motivation.

Principles of Partial Differential Equations

Author: Alexander Komech
Publisher: Springer Science & Business Media
ISBN: 9781441910950
Release Date: 2009-10-05
Genre: Mathematics

This concise book covers the classical tools of Partial Differential Equations Theory in today’s science and engineering. The rigorous theoretical presentation includes many hints, and the book contains many illustrative applications from physics.

Partial Differential Equation

Author: M. D. PETALE
Publisher: MANGESH DEVIDASRAO PETALE
ISBN:
Release Date:
Genre:

Purpose of this Book The purpose of this book is to supply lots of examples with details solution that helps the students to understand each example step wise easily and get rid of the college assignments phobia. It is sincerely hoped that this book will help and better equipped the higher secondary students to prepare and face the examinations with better confidence. I have endeavored to present the book in a lucid manner which will be easier to understand by all the engineering students. About the Book According to many streams in engineering course there are different chapters in Engineering Mathematics of the same year according to the streams. Hence students faced problem about to buy Engineering Mathematics special book that covered all chapters in a single book. That’s reason student needs to buy many books to cover all chapters according to the prescribed syllabus. Hence need to spend more money for a single subject to cover complete syllabus. So here good news for you, your problem solved. I made here special books according to chapter wise, which helps to buy books according to chapters and no need to pay extra money for unneeded chapters that not mentioned in your syllabus. PREFACE It gives me great pleasure to present to you this book on A Textbook on “Partial Differential Equation” of Engineering Mathematics presented specially for you. Many books have been written on Engineering Mathematics by different authors and teachers, but majority of the students find it difficult to fully understand the examples in these books. Also, the Teachers have faced many problems due to paucity of time and classroom workload. Sometimes the college teacher is not able to help their own student in solving many difficult questions in the class even though they wish to do so. Keeping in mind the need of the students, the author was inspired to write a suitable text book providing solutions to various examples of “Partial Differential Equation” of Engineering Mathematics. It is hoped that this book will meet more than an adequately the needs of the students they are meant for. I have tried our level best to make this book error free.

Partial Differential Equations in Action

Author: Sandro Salsa
Publisher: Springer
ISBN: 9783319150932
Release Date: 2015-04-24
Genre: Mathematics

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.

Introduction to Partial Differential Equations with Applications

Author: E. C. Zachmanoglou
Publisher: Courier Corporation
ISBN: 9780486132174
Release Date: 2012-04-20
Genre: Mathematics

This text explores the essentials of partial differential equations as applied to engineering and the physical sciences. Discusses ordinary differential equations, integral curves and surfaces of vector fields, the Cauchy-Kovalevsky theory, more. Problems and answers.

Problems in Distributions and Partial Differential Equations

Author: C. Zuily
Publisher: Elsevier
ISBN: 0080872549
Release Date: 1988-04-01
Genre: Mathematics

The aim of this book is to provide a comprehensive introduction to the theory of distributions, by the use of solved problems. Although written for mathematicians, it can also be used by a wider audience, including engineers and physicists. The first six chapters deal with the classical theory, with special emphasis on the concrete aspects. The reader will find many examples of distributions and learn how to work with them. At the beginning of each chapter the relevant theoretical material is briefly recalled. The last chapter is a short introduction to a very wide and important field in analysis which can be considered as the most natural application of distributions, namely the theory of partial differential equations. It includes exercises on the classical differential operators and on fundamental solutions, hypoellipticity, analytic hypoellipticity, Sobolev spaces, local solvability, the Cauchy problem, etc.

Partial Differential Equations of Applied Mathematics

Author: Erich Zauderer
Publisher: Wiley-Interscience
ISBN: 0471315168
Release Date: 1998-08-04
Genre: Mathematics

The only comprehensive guide to modeling, characterizing, and solving partial differential equations This classic text by Erich Zauderer provides a comprehensive account of partial differential equations and their applications. Dr. Zauderer develops mathematical models that give rise to partial differential equations and describes classical and modern solution techniques. With an emphasis on practical applications, he makes liberal use of real-world examples, explores both linear and nonlinear problems, and provides approximate as well as exact solutions. He also describes approximation methods for simplifying complicated solutions and for solving linear and nonlinear problems not readily solved by standard methods. The book begins with a demonstration of how the three basic types of equations (parabolic, hyperbolic, and elliptic) can be derived from random walk models. It continues in a less statistical vein to cover an exceptionally broad range of topics, including stabilities, singularities, transform methods, the use of Green's functions, and perturbation and asymptotic treatments. Features that set Partial Differential Equations of Applied Mathematics, Second Edition above all other texts in the field include: Coverage of random walk problems, discontinuous and singular solutions, and perturbation and asymptotic methods More than 800 practice exercises, many of which are fully worked out Numerous up-to-date examples from engineering and the physical sciences Partial Differential Equations of Applied Mathematics, Second Edition is a superior advanced-undergraduate to graduate-level text for students in engineering, the sciences, and applied mathematics. The title is also a valuable working resource for professionals in these fields. Dr. Zauderer received his doctorate in mathematics from the New York University-Courant Institute. Prior to joining the staff of Polytechnic University, he was a Senior Weitzmann Fellow of the Weitzmann Institute of Science in Rehovot, Israel.

Ordinary and Partial Differential Equations

Author: Ravi P. Agarwal
Publisher: Springer Science & Business Media
ISBN: 9780387791463
Release Date: 2008-11-13
Genre: Mathematics

In this undergraduate/graduate textbook, the authors introduce ODEs and PDEs through 50 class-tested lectures. Mathematical concepts are explained with clarity and rigor, using fully worked-out examples and helpful illustrations. Exercises are provided at the end of each chapter for practice. The treatment of ODEs is developed in conjunction with PDEs and is aimed mainly towards applications. The book covers important applications-oriented topics such as solutions of ODEs in form of power series, special functions, Bessel functions, hypergeometric functions, orthogonal functions and polynomials, Legendre, Chebyshev, Hermite, and Laguerre polynomials, theory of Fourier series. Undergraduate and graduate students in mathematics, physics and engineering will benefit from this book. The book assumes familiarity with calculus.

Introduction to Partial Differential Equations

Author: Donald Greenspan
Publisher: Courier Corporation
ISBN: 0486414507
Release Date: 2000
Genre: Mathematics

Rigorous presentation, designed for use in a 1-semester course, explores basics; Fourier series; 2nd-order partial differential equations; wave, potential, and heat equations; approximate solution of partial differential equations, more. Exercises. 1961 edition.

Generalized Functions and Partial Differential Equations

Author: Avner Friedman
Publisher: Courier Corporation
ISBN: 048615291X
Release Date: 2011-11-30
Genre: Mathematics

This self-contained text details developments in the theory of generalized functions and the theory of distributions, and it systematically applies them to a variety of problems in partial differential equations. 1963 edition.

Green s Functions and Linear Differential Equations

Author: Prem K. Kythe
Publisher: CRC Press
ISBN: 9781439840092
Release Date: 2011-01-21
Genre: Mathematics

Green’s Functions and Linear Differential Equations: Theory, Applications, and Computation presents a variety of methods to solve linear ordinary differential equations (ODEs) and partial differential equations (PDEs). The text provides a sufficient theoretical basis to understand Green’s function method, which is used to solve initial and boundary value problems involving linear ODEs and PDEs. It also contains a large number of examples and exercises from diverse areas of mathematics, applied science, and engineering. Taking a direct approach, the book first unravels the mystery of the Dirac delta function and then explains its relationship to Green’s functions. The remainder of the text explores the development of Green’s functions and their use in solving linear ODEs and PDEs. The author discusses how to apply various approaches to solve initial and boundary value problems, including classical and general variations of parameters, Wronskian method, Bernoulli’s separation method, integral transform method, method of images, conformal mapping method, and interpolation method. He also covers applications of Green’s functions, including spherical and surface harmonics. Filled with worked examples and exercises, this robust, self-contained text fully explains the differential equation problems, includes graphical representations where necessary, and provides relevant background material. It is mathematically rigorous yet accessible enough for readers to grasp the beauty and power of the subject.

Partial Differential Equations III

Author: Michael Taylor
Publisher: Springer Science & Business Media
ISBN: 1441970495
Release Date: 2010-11-02
Genre: Mathematics

The third of three volumes on partial differential equations, this is devoted to nonlinear PDE. It treats a number of equations of classical continuum mechanics, including relativistic versions, as well as various equations arising in differential geometry, such as in the study of minimal surfaces, isometric imbedding, conformal deformation, harmonic maps, and prescribed Gauss curvature. In addition, some nonlinear diffusion problems are studied. It also introduces such analytical tools as the theory of L Sobolev spaces, H lder spaces, Hardy spaces, and Morrey spaces, and also a development of Calderon-Zygmund theory and paradifferential operator calculus. The book is aimed at graduate students in mathematics, and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis and complex analysis