Pattern Classification

Author: Richard O. Duda
Publisher: John Wiley & Sons
ISBN: 9781118586006
Release Date: 2012-11-09
Genre: Technology & Engineering

The first edition, published in 1973, has become a classicreference in the field. Now with the second edition, readers willfind information on key new topics such as neural networks andstatistical pattern recognition, the theory of machine learning,and the theory of invariances. Also included are worked examples,comparisons between different methods, extensive graphics, expandedexercises and computer project topics. An Instructor's Manual presenting detailed solutions to all theproblems in the book is available from the Wiley editorialdepartment.

Pattern classification

Author: Richard O. Duda
Publisher: Wiley-Interscience
ISBN: UOM:39015050303265
Release Date: 2001
Genre: Computers

This edition has been completely revised, enlarged and formatted in two colour. It is a systematic account of the major topics in pattern recognition, based on the fundamental principles. It includes extensive examples, exercises and a solutions manual.

Pattern Classification and Scene Analysis

Author: Richard O. Duda
Publisher: Wiley
ISBN: 0471223611
Release Date: 1973-02-09
Genre: Reference

Introduction to Mathematical Techniques in Pattern Recognition by Harry C. Andrews This volume is one of the first cohesive treatments of the use of mathematics for studying interactions between various recognition environments. It brings together techniques previously scattered throughout the literature and provides a concise common notation that will facilitate the understanding and comparison of the many aspects of mathematical pattern recognition. The contents of this volume are divided into five interrelated subject areas: Feature Selection, Distribution Free Classification, Statistical Classification, Nonsupervised Learning, and Sequential Learning. Appendices describing specific aspects of feature selection and extensive reference and bibliographies are included. 1972 253 pp. Threshold Logic and its Applications by Saburo Muroga This is the first in-depth exposition of threshold logic and its applications using linear programming and integer programming as optimization tools. It presents threshold logic as a unified theory of conventional simple gates, threshold gates and their networks. This unified viewpoint explicitly reveals many important properties that were formerly concealed in the framework of conventional switching theory (based essentially on and, or and not gates). 1971 478 pp. Knowing and Guessing A Quantitative Study of Inference and Information By Satosi Watanabe This volume presents a coherent theoretical view of a field now split into different disciplines: philosophy, information science, cybernetics, psychology, electrical engineering, and physics. The target of investigation is the cognitive process of knowing and guessing. In contrast to traditional philosophy, the approach is quantitative rather than qualitative. The study is formal in the sense that the author is not interested in the contents of knowledge or the physiological mechanism of the process of knowing. "The author’s style is lucid, his comments are illuminating. The result is a fascinating book, which will be of interest to scientists in many different fields." — Nature 1969 592 pp.

Support Vector Machines for Pattern Classification

Author: Shigeo Abe
Publisher: Springer Science & Business Media
ISBN: 9781846282195
Release Date: 2006-03-30
Genre: Computers

I was shocked to see a student’s report on performance comparisons between support vector machines (SVMs) and fuzzy classi?ers that we had developed withourbestendeavors.Classi?cationperformanceofourfuzzyclassi?erswas comparable, but in most cases inferior, to that of support vector machines. This tendency was especially evident when the numbers of class data were small. I shifted my research e?orts from developing fuzzy classi?ers with high generalization ability to developing support vector machine–based classi?ers. This book focuses on the application of support vector machines to p- tern classi?cation. Speci?cally, we discuss the properties of support vector machines that are useful for pattern classi?cation applications, several m- ticlass models, and variants of support vector machines. To clarify their - plicability to real-world problems, we compare performance of most models discussed in the book using real-world benchmark data. Readers interested in the theoretical aspect of support vector machines should refer to books such as [109, 215, 256, 257].

Computer Manual in MATLAB to accompany Pattern Classification

Author: David G. Stork
Publisher: Wiley-Interscience
ISBN: 0471429775
Release Date: 2004-04-08
Genre: Computers

Computer Manual to Accompany Pattern Classification and its associated MATLAB software is an excellent companion to Duda: Pattern Classfication, 2nd ed, (DH&S). The code contains all algorithms described in Duda as well as supporting algorithms for data generation and visualization. The Manual uses the same terminology as the DH&S text and contains step-by-step worked examples, including many of the examples and figures in the textbook. The Manual is accompanied by software that is available electronically. The software contains all algorithms in DH&S, indexed to the textbook, and uses symbols and notation as close as possible to the textbook. The code is self-annotating so the user can easily navigate, understand and modify the code.

Pattern Recognition

Author: Sankar K. Pal
Publisher: World Scientific
ISBN: 981238653X
Release Date: 2001
Genre: Computers

This volume, containing contributions by experts from all over the world, is a collection of 21 articles which present review and research material describing the evolution and recent developments of various pattern recognition methodologies, ranging from statistical, syntactic/linguistic, fuzzy-set-theoretic, neural, genetic-algorithmic and rough-set-theoretic to hybrid soft computing, with significant real-life applications. In addition, the book describes efficient soft machine learning algorithms for data mining and knowledge discovery. With a balanced mixture of theory, algorithms and applications, as well as up-to-date information and an extensive bibliography, Pattern Recognition: From Classical to Modern Approaches is a very useful resource. Contents: Pattern Recognition: Evolution of Methodologies and Data Mining (A Pal & S K Pal); Adaptive Stochastic Algorithms for Pattern Classification (M A L Thathachar & P S Sastry); Shape in Images (K V Mardia); Decision Trees for Classification: A Review and Some New Results (R Kothari & M Dong); Syntactic Pattern Recognition (A K Majumder & A K Ray); Fuzzy Sets as a Logic Canvas for Pattern Recognition (W Pedrycz & N Pizzi); Neural Network Based Pattern Recognition (V David Sanchez A); Networks of Spiking Neurons in Data Mining (K Cios & D M Sala); Genetic Algorithms, Pattern Classification and Neural Networks Design (S Bandyopadhyay et al.); Rough Sets in Pattern Recognition (A Skowron & R Swiniarski); Automated Generation of Qualitative Representations of Complex Objects by Hybrid Soft-Computing Methods (E H Ruspini & I S Zwir); Writing Speed and Writing Sequence Invariant On-line Handwriting Recognition (S-H Cha & S N Srihari); Tongue Diagnosis Based on Biometric Pattern Recognition Technology (K Wang et al.); and other papers. Readership: Graduate students, researchers and academics in pattern recognition.

Pattern Recognition

Author: Sergios Theodoridis
Publisher: Academic Press
ISBN: 0080949126
Release Date: 2008-11-26
Genre: Computers

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.

Error Estimation for Pattern Recognition

Author: Ulisses M. Braga Neto
Publisher: John Wiley & Sons
ISBN: 9781119079330
Release Date: 2015-06-17
Genre: Technology & Engineering

This book is the first of its kind to discuss error estimation with a model-based approach. From the basics of classifiers and error estimators to distributional and Bayesian theory, it covers important topics and essential issues pertaining to the scientific validity of pattern classification. Error Estimation for Pattern Recognition focuses on error estimation, which is a broad and poorly understood topic that reaches all research areas using pattern classification. It includes model-based approaches and discussions of newer error estimators such as bolstered and Bayesian estimators. This book was motivated by the application of pattern recognition to high-throughput data with limited replicates, which is a basic problem now appearing in many areas. The first two chapters cover basic issues in classification error estimation, such as definitions, test-set error estimation, and training-set error estimation. The remaining chapters in this book cover results on the performance and representation of training-set error estimators for various pattern classifiers. Additional features of the book include: • The latest results on the accuracy of error estimation • Performance analysis of re-substitution, cross-validation, and bootstrap error estimators using analytical and simulation approaches • Highly interactive computer-based exercises and end-of-chapter problems This is the first book exclusively about error estimation for pattern recognition. Ulisses M. Braga Neto is an Associate Professor in the Department of Electrical and Computer Engineering at Texas A&M University, USA. He received his PhD in Electrical and Computer Engineering from The Johns Hopkins University. Dr. Braga Neto received an NSF CAREER Award for his work on error estimation for pattern recognition with applications in genomic signal processing. He is an IEEE Senior Member. Edward R. Dougherty is a Distinguished Professor, Robert F. Kennedy ’26 Chair, and Scientific Director at the Center for Bioinformatics and Genomic Systems Engineering at Texas A&M University, USA. He is a fellow of both the IEEE and SPIE, and he has received the SPIE Presidents Award. Dr. Dougherty has authored several books including Epistemology of the Cell: A Systems Perspective on Biological Knowledge and Random Processes for Image and Signal Processing (Wiley-IEEE Press).

Pattern Classification Using Ensemble Methods

Author: Lior Rokach
Publisher: World Scientific
ISBN: 9789814271073
Release Date: 2010
Genre: Algorithms

Researchers from various disciplines such as pattern recognition, statistics, and machine learning have explored the use of ensemble methodology since the late seventies. Thus, they are faced with a wide variety of methods, given the growing interest in the field. This book aims to impose a degree of order upon this diversity by presenting a coherent and unified repository of ensemble methods, theories, trends, challenges and applications. The book describes in detail the classical methods, as well as the extensions and novel approaches developed recently. Along with algorithmic descriptions of each method, it also explains the circumstances in which this method is applicable and the consequences and the trade-offs incurred by using the method. Sample Chapter(s). Chapter 1: Introduction to Pattern Classification (246 KB). Contents: Introduction to Pattern Classification; Introduction to Ensemble Learning; Ensemble Classification; Ensemble Diversity; Ensemble Selection; Error Correcting Output Codes; Evaluating Ensembles of Classifiers. Readership: Researchers, advanced undergraduate and graduate students in machine learning and pattern recognition.

Pattern Recognition and Data Mining

Author: Sameer Singh
Publisher: Springer Science & Business Media
ISBN: 3540287574
Release Date: 2005-08-18
Genre: Computers

The two volume set LNCS 3686 and LNCS 3687 constitutes the refereed proceedings of the Third International Conference on Advances in Pattern Recognition, ICAPR 2005, held in Bath, UK in August 2005. The papers submitted to ICAPR 2005 were thoroughly reviewed by up to three referees per paper and less than 40% of the submitted papers were accepted. The first volume includes 73 contributions related to Pattern Recognition and Data Mining (which included papers from the tracks of pattern recognition methods, knowledge and learning, and data mining); topics addressed are pattern recognition, data mining, signal processing and OCR/ document analysis. The second volume contains 87 contributions related to Pattern Recognition and Image Analysis (which included papers from the applications track) and deals with security and surveillance, biometrics, image processing and medical imaging. It also contains papers from the Workshop on Pattern Recognition for Crime Prevention.

Soft Computing Approach to Pattern Classification and Object Recognition

Author: Kumar S. Ray
Publisher: Springer Science & Business Media
ISBN: 9781461453482
Release Date: 2012-10-05
Genre: Computers

Soft Computing Approach to Pattern Classification and Object Recognition establishes an innovative, unified approach to supervised pattern classification and model-based occluded object recognition. The book also surveys various soft computing tools, fuzzy relational calculus (FRC), genetic algorithm (GA) and multilayer perceptron (MLP) to provide a strong foundation for the reader. The supervised approach to pattern classification and model-based approach to occluded object recognition are treated in one framework , one based on either a conventional interpretation or a new interpretation of multidimensional fuzzy implication (MFI) and a novel notion of fuzzy pattern vector (FPV). By combining practice and theory, a completely independent design methodology was developed in conjunction with this supervised approach on a unified framework, and then tested thoroughly against both synthetic and real-life data. In the field of soft computing, such an application-oriented design study is unique in nature. The monograph essentially mimics the cognitive process of human decision making, and carries a message of perceptual integrity in representational diversity. Soft Computing Approach to Pattern Classification and Object Recognition is intended for researchers in the area of pattern classification and computer vision. Other academics and practitioners will also find the book valuable.

New Soft Computing Techniques for System Modeling Pattern Classification and Image Processing

Author: Leszek Rutkowski
Publisher: Springer Science & Business Media
ISBN: 3540205845
Release Date: 2004-02-03
Genre: Computers

Science has made great progress in the twentieth century, with the establishment of proper disciplines in the fields of physics, computer science, molecular biology, and many others. At the same time, there have also emerged many engineering ideas that are interdisciplinary in nature, beyond the realm of such orthodox disciplines. These in clude, for example, artificial intelligence, fuzzy logic, artificial neural networks, evolutional computation, data mining, and so on. In or der to generate new technology that is truly human-friendly in the twenty-first century, integration of various methods beyond specific disciplines is required. Soft computing is a key concept for the creation of such human friendly technology in our modern information society. Professor Rutkowski is a pioneer in this field, having devoted himself for many years to publishing a large variety of original work. The present vol ume, based mostly on his own work, is a milestone in the devel opment of soft computing, integrating various disciplines from the fields of information science and engineering. The book consists of three parts, the first of which is devoted to probabilistic neural net works. Neural excitation is stochastic, so it is natural to investi gate the Bayesian properties of connectionist structures developed by Professor Rutkowski. This new approach has proven to be par ticularly useful for handling regression and classification problems vi Preface in time-varying environments. Throughout this book, major themes are selected from theoretical subjects that are tightly connected with challenging applications.

Computational Intelligence Paradigms in Advanced Pattern Classification

Author: Marek R. Ogiela
Publisher: Springer Science & Business Media
ISBN: 9783642240485
Release Date: 2012-01-13
Genre: Computers

This monograph presents selected areas of application of pattern recognition and classification approaches including handwriting recognition, medical image analysis and interpretation, development of cognitive systems for image computer understanding, moving object detection, advanced image filtration and intelligent multi-object labelling and classification. It is directed to the scientists, application engineers, professors, professors and students will find this book useful.

Ensemble Learning Pattern Classification Using Ensemble Methods Second Edition

Author: Rokach Lior
Publisher: World Scientific
ISBN: 9789811201974
Release Date: 2019-02-27
Genre: Computers

This updated compendium provides a methodical introduction with a coherent and unified repository of ensemble methods, theories, trends, challenges, and applications. More than a third of this edition comprised of new materials, highlighting descriptions of the classic methods, and extensions and novel approaches that have recently been introduced.Along with algorithmic descriptions of each method, the settings in which each method is applicable and the consequences and tradeoffs incurred by using the method is succinctly featured. R code for implementation of the algorithm is also emphasized.The unique volume provides researchers, students and practitioners in industry with a comprehensive, concise and convenient resource on ensemble learning methods.

Pattern Recognition and Image Preprocessing

Author: Sing T. Bow
Publisher: CRC Press
ISBN: 0203903897
Release Date: 2002-01-11
Genre: Technology & Engineering

Describing non-parametric and parametric theoretic classification and the training of discriminant functions, this second edition includes new and expanded sections on neural networks, Fisher's discriminant, wavelet transform, and the method of principal components. It contains discussions on dimensionality reduction and feature selection, novel computer system architectures, proven algorithms for solutions to common roadblocks in data processing, computing models including the Hamming net, the Kohonen self-organizing map, and the Hopfield net, detailed appendices with data sets illustrating key concepts in the text, and more.