Handbook of Pattern Recognition and Computer Vision 5th Edition

Author: Chi-hau Chen
Publisher: World Scientific
ISBN: 9789814656535
Release Date: 2015-12-15
Genre: Computers

The book provides an up-to-date and authoritative treatment of pattern recognition and computer vision, with chapters written by leaders in the field. On the basic methods in pattern recognition and computer vision, topics range from statistical pattern recognition to array grammars to projective geometry to skeletonization, and shape and texture measures. Recognition applications include character recognition and document analysis, detection of digital mammograms, remote sensing image fusion, and analysis of functional magnetic resonance imaging data, etc.

Introduction to Pattern Recognition

Author: Sergios Theodoridis
Publisher: Academic Press
ISBN: 0080922759
Release Date: 2010-03-03
Genre: Computers

Introduction to Pattern Recognition: A Matlab Approach is an accompanying manual to Theodoridis/Koutroumbas' Pattern Recognition. It includes Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. This text is designed for electronic engineering, computer science, computer engineering, biomedical engineering and applied mathematics students taking graduate courses on pattern recognition and machine learning as well as R&D engineers and university researchers in image and signal processing/analyisis, and computer vision. Matlab code and descriptive summary of the most common methods and algorithms in Theodoridis/Koutroumbas, Pattern Recognition, Fourth Edition Solved examples in Matlab, including real-life data sets in imaging and audio recognition Available separately or at a special package price with the main text (ISBN for package: 978-0-12-374491-3)

Pattern Recognition

Author: Sergios Theodoridis
Publisher: Academic Press
ISBN: 0080949126
Release Date: 2008-11-26
Genre: Computers

This book considers classical and current theory and practice, of supervised, unsupervised and semi-supervised pattern recognition, to build a complete background for professionals and students of engineering. The authors, leading experts in the field of pattern recognition, have provided an up-to-date, self-contained volume encapsulating this wide spectrum of information. The very latest methods are incorporated in this edition: semi-supervised learning, combining clustering algorithms, and relevance feedback. · Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques · Many more diagrams included--now in two color--to provide greater insight through visual presentation · Matlab code of the most common methods are given at the end of each chapter. · More Matlab code is available, together with an accompanying manual, via this site · Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms. · An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary, and solved examples including real-life data sets in imaging, and audio recognition. The companion book will be available separately or at a special packaged price (ISBN: 9780123744869). Thoroughly developed to include many more worked examples to give greater understanding of the various methods and techniques Many more diagrams included--now in two color--to provide greater insight through visual presentation Matlab code of the most common methods are given at the end of each chapter An accompanying book with Matlab code of the most common methods and algorithms in the book, together with a descriptive summary and solved examples, and including real-life data sets in imaging and audio recognition. The companion book is available separately or at a special packaged price (Book ISBN: 9780123744869. Package ISBN: 9780123744913) Latest hot topics included to further the reference value of the text including non-linear dimensionality reduction techniques, relevance feedback, semi-supervised learning, spectral clustering, combining clustering algorithms Solutions manual, powerpoint slides, and additional resources are available to faculty using the text for their course. Register at www.textbooks.elsevier.com and search on "Theodoridis" to access resources for instructor.

Machine Learning and Data Mining in Pattern Recognition

Author: Petra Perner
Publisher: Springer Science & Business Media
ISBN: 9783540269236
Release Date: 2005-07-08
Genre: Computers

We met again in front of the statue of Gottfried Wilhelm von Leibniz in the city of Leipzig. Leibniz, a famous son of Leipzig, planned automatic logical inference using symbolic computation, aimed to collate all human knowledge. Today, artificial intelligence deals with large amounts of data and knowledge and finds new information using machine learning and data mining. Machine learning and data mining are irreplaceable subjects and tools for the theory of pattern recognition and in applications of pattern recognition such as bioinformatics and data retrieval. This was the fourth edition of MLDM in Pattern Recognition which is the main event of Technical Committee 17 of the International Association for Pattern Recognition; it started out as a workshop and continued as a conference in 2003. Today, there are many international meetings which are titled “machine learning” and “data mining”, whose topics are text mining, knowledge discovery, and applications. This meeting from the first focused on aspects of machine learning and data mining in pattern recognition problems. We planned to reorganize classical and well-established pattern recognition paradigms from the viewpoints of machine learning and data mining. Though it was a challenging program in the late 1990s, the idea has inspired new starting points in pattern recognition and effects in other areas such as cognitive computer vision.

Applied Pattern Recognition

Author: Dietrich Paulus
Publisher: Springer Science & Business Media
ISBN: 3528355581
Release Date: 2003-02-25
Genre: Technology & Engineering

This book demonstrates the efficiency of the C++ programming language in the realm of pattern recognition and pattern analysis. For this 4th edition, new features of the C++ language were integrated and their relevance for image and speech processing is discussed.

Object Detection and Recognition in Digital Images

Author: Boguslaw Cyganek
Publisher: John Wiley & Sons
ISBN: 9781118618363
Release Date: 2013-05-20
Genre: Science

Object detection, tracking and recognition in images are key problems in computer vision. This book provides the reader with a balanced treatment between the theory and practice of selected methods in these areas to make the book accessible to a range of researchers, engineers, developers and postgraduate students working in computer vision and related fields. Key features: Explains the main theoretical ideas behind each method (which are augmented with a rigorous mathematical derivation of the formulas), their implementation (in C++) and demonstrated working in real applications. Places an emphasis on tensor and statistical based approaches within object detection and recognition. Provides an overview of image clustering and classification methods which includes subspace and kernel based processing, mean shift and Kalman filter, neural networks, and k-means methods. Contains numerous case study examples of mainly automotive applications. Includes a companion website hosting full C++ implementation, of topics presented in the book as a software library, and an accompanying manual to the software platform.

Mustererkennung im Mittelspiel

Author: International Master Arthur van de Oudeweetering
Publisher: New In Chess
ISBN: 9789056916169
Release Date: 2016-07-31
Genre: Games

Die Mustererkennung ist eines der wichtigsten Werkzeuge bei der Verbesserung im Schach. Die Erkenntnis, dass die Stellung auf dem Brett Ähnlichkeiten mit etwas hat, was man bereits gesehen hat, erleichtert Ihnen, rasch den Gehalt der Stellung zu erfassen und die vielversprechendste Fortsetzung zu finden. Mustererkennung im Mittelspiel versorgt Sie mit einem reichhaltigen Schatz an wichtigen und doch leicht einzuprägenden Bausteinen für Ihr Schachwissen. In 40 kurzen, scharf umrissenen Kapiteln präsentiert der erfahrene Schachtrainer Arthur van de Oudeweetering hunderte Beispiele zu verblüffenden Mittelspielthemen. Um Ihr Verständnis zu testen, gibt es zu jedem Abschnitt Aufgaben. Nach der Arbeit mit diesem Buch wird sich Ihr Schachwissen ganz wie von selbst um die Kenntnis zahlreicher Stellungstypen, Bauernstrukturen und Figurenkonstellationen vermehrt haben. Im Ergebnis werden Sie den richtigen Zug häufiger und auch rascher finden!

Pattern Recognition in Bioinformatics

Author: Visakan Kadirkamanathan
Publisher: Springer
ISBN: 9783642040313
Release Date: 2009-08-31
Genre: Science

This book constitutes the refereed proceedings of the Fourth International Workshop on Pattern Recognition in Bioinformatics, PRIB 2009, held in Sheffield, UK, in September 2009. The 38 revised full papers presented were carefully reviewed and selected from numerous submissions. The topics covered by these papers range from image analysis for biomedical data to systems biology. The conference aims at crating a focus for the development and application of pattern recognition techniques in the biological domain.

Energy Minimization Methods in Computer Vision and Pattern Recognition

Author: Anand Rangarajan
Publisher: Springer
ISBN: 9783540450634
Release Date: 2003-10-02
Genre: Computers

This book constitutes the refereed proceedings of the 4th International Workshop on Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR 2003, held in Lisbon, Portugal in July 2003.The 33 revised full papers presented were carefully reviewed and selected from 66 submissions. The papers are organized in topical sections on unsupervised learning and matching, probabilistic modeling, segmentation and grouping, shape modeling, restoration and reconstruction, and graphs and graph-based methods.

Data mining

Author: Ian H. Witten
Publisher:
ISBN: 3446215336
Release Date: 2001
Genre:


Graph Based Representations in Pattern Recognition

Author: Edwin Hancock
Publisher: Springer Science & Business Media
ISBN: 9783540404521
Release Date: 2003-06-18
Genre: Computers

This volume contains the papers presented at the Fourth IAPR Workshop on Graph Based Representations in Pattern Recognition. The workshop was held at the King’s Manor in York, England between 30 June and 2nd July 2003. The previous workshops in the series were held in Lyon, France (1997), Haindorf, Austria (1999), and Ischia, Italy (2001). The city of York provided an interesting venue for the meeting. It has been said that the history of York is the history of England. There have been both Roman and Viking episodes. For instance, Constantine was proclaimed emperor in York. The city has also been a major seat of ecclesiastical power and was also involved in the development of the railways in the nineteenth century. Much of York’s history is evidenced by its buildings, and the King’s Manor is one of the most important and attractive of these. Originally part of the Abbey, after the dissolution of the monasteries by Henry VIII, the building became a center of government for the Tudors and the Stuarts (who stayed here regularly on their journeys between London and Edinburgh), serving as the headquarters of the Council of the North until it was disbanded in 1561. The building became part of the University of York at its foundation in 1963. The papers in the workshop span the topics of representation, segmentation, graph-matching, graph edit-distance, matrix and spectral methods, and gra- clustering.

Artificial Neural Networks in Pattern Recognition

Author: Friedhelm Schwenker
Publisher: Springer
ISBN: 9783642121593
Release Date: 2010-04-16
Genre: Computers

Artificial Neural Networks in Pattern Recognition synthesizes the proceedings of the 4th IAPR TC3 Workshop, ANNPR 2010. Topics include supervised and unsupervised learning, feature selection, pattern recognition in signal and image processing.

Digitale Bildverarbeitung

Author: Wilhelm Burger
Publisher: Springer-Verlag
ISBN: 9783540276531
Release Date: 2006-01-09
Genre: Computers

Die Autoren geben eine fundierte Einführung in die wichtigsten Methoden der digitalen Bildverarbeitung. Dabei steht die praktische Anwendbarkeit im Vordergrund, formale und mathematische Aspekte sind auf das Wesentliche reduziert, ohne dabei auf eine präzise und konsistente Vorgehensweise zu verzichten. Der Text eignet sich für technisch orientierte Studiengänge ab dem 3.Semester und basiert auf der mehrjährigen Lehrerfahrung der Autoren zu diesem Thema. Der Einsatz in der Lehre wird durch zahlreiche praktische Übungsaufgaben unterstützt. Das Buch eignet sich auch als detaillierte Referenz für Praktiker und Anwender gängiger Verfahren der digitalen Bildverarbeitung, z.B. in der Medizin, der Materialprüfung, der Robotik oder der Medientechnik. Softwareseitig basiert das Buch auf der in Java implementierten und frei verfügbaren Bildverarbeitungsumgebung ImageJ.

NEURAL NETWORKS AND PATTERN RECOGNITION Edition en anglais

Author: Omid Omidvar
Publisher: Academic Press
ISBN: 0125264208
Release Date: 1998
Genre: Computers

Pulse-coupled neural networks; A neural network model for optical flow computation; Temporal pattern matching using an artificial neural network; Patterns of dynamic activity and timing in neural network processing; A macroscopic model of oscillation in ensembles of inhibitory and excitatory neurons; Finite state machines and recurrent neural networks: automata and dynamical systems approaches; biased random-waldk learning; a neurobiological correlate to trial-and-error; Using SONNET 1 to segment continuous sequences of items; On the use of high-level petri nets in the modeling of biological neural networks; Locally recurrent networks: the gmma operator, properties, and extensions.