Phase Transformations in Metals and Alloys Third Edition Revised Reprint

Author: David A. Porter
Publisher: CRC Press
ISBN: 0748757414
Release Date: 1992-09-10
Genre: Technology & Engineering

In the decade since the first edition of this popular text was published, the metallurgical field has undergone rapid developments in many sectors. Nonetheless, the underlying principles governing these developments remain the same. A textbook that presents these advances within the context of the fundamentals is greatly needed by instructors in the field Phase Transformations in Metals and Alloys, Second Edition maintains the simplicity that undergraduate instructors and students have come to appreciate while updating and expanding coverage of recently developed methods and materials. The book is effectively divided into two parts. The beginning chapters contain the background material necessary for understanding phase transformations - thermodynamics, kinetics, diffusion theory and the structure and properties of interfaces. The following chapters deal with specific transformations - solidification, diffusional transformation in solids and diffusionless transformation. Case studies of engineering alloys are incorporated to provide a link between theory and practice. New additions include an extended list of further reading at the end of each chapter and a section containing complete solutions to all exercises in the book Designed for final year undergraduate and postgraduate students of metallurgy, materials science, or engineering materials, this is an ideal textbook for both students and instructors.

Phase Transformations in Metals and Alloys

Author: David A. Porter
Publisher: CRC Press
ISBN: 1138458074
Release Date: 2018-03-16
Genre:

Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys. New in the Third Edition: Computer-aided calculation of phase diagrams Recent developments in metallic glasses The Scheil method of calculating a CCT diagram from a TTT diagram Expanded treatment of the nucleation and growth of polygonal ferrite and bainite New case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steels Unique Presentation Links Theory to ApplicationAdding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions� popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The book�s unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the author�s teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises. PowerPoint� illustrations available with qualifying course adoptions

Phase Transformations in Metals and Alloys Third Edition Revised Reprint

Author: David A. Porter
Publisher: CRC Press
ISBN: 1420062107
Release Date: 2009-02-10
Genre: Technology & Engineering

Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys. New in the Third Edition: Computer-aided calculation of phase diagrams Recent developments in metallic glasses The Scheil method of calculating a CCT diagram from a TTT diagram Expanded treatment of the nucleation and growth of polygonal ferrite and bainite New case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steels Unique Presentation Links Theory to Application Adding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions’ popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The book’s unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the author’s teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises. PowerPoint© illustrations available on an accompanying CD-ROM with qualifying course adoptions

Phase Transformations in Metals and Alloys Third Edition Revised Reprint

Author: David A. Porter
Publisher: CRC Press
ISBN: 9781439883570
Release Date: 2009-02-10
Genre: Technology & Engineering

Expanded and revised to cover developments in the field over the past 17 years, and now reprinted to correct errors in the prior printing, Phase Transformation in Metals and Alloys, Third Edition provides information and examples that better illustrate the engineering relevance of this topic. It supplies a comprehensive overview of specific types of phase transformations, supplemented by practical case studies of engineering alloys. New in the Third Edition: Computer-aided calculation of phase diagrams Recent developments in metallic glasses The Scheil method of calculating a CCT diagram from a TTT diagram Expanded treatment of the nucleation and growth of polygonal ferrite and bainite New case studies covering copper precipitation hardening of very low carbon bainitic steel and very fine carbide-free bainite Detailed treatment of strain-induced martensite provides a theoretical background to transformation-induced plasticity (TRIP) steels Unique Presentation Links Theory to Application Adding new case studies, detailed examples, and exercises drawn from current applications, the third edition keeps the previous editions’ popular easy-to -follow style and excellent mix of basic and advanced information, making it ideal for those new to the field. The book’s unique presentation links basic understanding of theory with application in a gradually progressive yet exciting manner. Based on the author’s teaching notes, the book takes a pedagogical approach and provides examples for applications and problems that can be readily used for exercises. PowerPoint© illustrations available with qualifying course adoptions

Introduction to the Physical Metallurgy of Welding

Author: Kenneth Easterling
Publisher: Elsevier
ISBN: 9781483141664
Release Date: 2013-09-17
Genre: Technology & Engineering

Introduction to the Physical Metallurgy of Welding deals primarily with the welding of steels, which reflects the larger volume of literature on this material; however, many of the principles discussed can also be applied to other alloys. The book is divided into four chapters, in which the middle two deal with the microstructure and properties of the welded joint, such as the weld metal and the heat-affected zone. The first chapter is designed to provide a wider introduction to the many process variables of fusion welding, particularly those that may influence microstructure and properties, while the final chapter is concerned with cracking and fracture in welds. A comprehensive case study of the Alexander Kielland North Sea accommodation platform disaster is also discussed at the end. The text is written for undergraduate or postgraduate courses in departments of metallurgy, materials science, or engineering materials. The book will also serve as a useful revision text for engineers concerned with welding problems in industry.

Kinetics of Materials

Author: Robert W. Balluffi
Publisher: John Wiley & Sons
ISBN: 9780471749301
Release Date: 2005-12-16
Genre: Science

A classroom-tested textbook providing a fundamental understanding of basic kinetic processes in materials This textbook, reflecting the hands-on teaching experience of its three authors, evolved from Massachusetts Institute of Technology's first-year graduate curriculum in the Department of Materials Science and Engineering. It discusses key topics collectively representing the basic kinetic processes that cause changes in the size, shape, composition, and atomistic structure of materials. Readers gain a deeper understanding of these kinetic processes and of the properties and applications of materials. Topics are introduced in a logical order, enabling students to develop a solid foundation before advancing to more sophisticated topics. Kinetics of Materials begins with diffusion, offering a description of the elementary manner in which atoms and molecules move around in solids and liquids. Next, the more complex motion of dislocations and interfaces is addressed. Finally, still more complex kinetic phenomena, such as morphological evolution and phase transformations, are treated. Throughout the textbook, readers are instilled with an appreciation of the subject's analytic foundations and, in many cases, the approximations commonly used in the field. The authors offer many extensive derivations of important results to help illuminate their origins. While the principal focus is on kinetic phenomena in crystalline materials, select phenomena in noncrystalline materials are also discussed. In many cases, the principles involved apply to all materials. Exercises with accompanying solutions are provided throughout Kinetics of Materials, enabling readers to put their newfound knowledge into practice. In addition, bibliographies are offered with each chapter, helping readers to investigate specialized topics in greater detail. Several appendices presenting important background material are also included. With its unique range of topics, progressive structure, and extensive exercises, this classroom-tested textbook provides an enriching learning experience for first-year graduate students.

Diffusion in Solids

Author: Paul Shewmon
Publisher: Springer
ISBN: 9783319482064
Release Date: 2016-12-06
Genre: Technology & Engineering

This book offers detailed descriptions of the methods available to predict the occurrence of diffusion in alloys subjected to various processes. Major topic areas covered include diffusion equations, atomic theory of diffusion, diffusion in dilute alloys, diffusion in a concentration gradient, diffusion in non-metals, high diffusivity paths, and thermo- and electro-transport.

Introduction to the Thermodynamics of Materials Sixth Edition

Author: David R. Gaskell
Publisher: CRC Press
ISBN: 9781498757010
Release Date: 2017-08-15
Genre: Technology & Engineering

Maintaining the substance that made Introduction to the Thermodynamic of Materials a perennial best seller for decades, this Sixth Edition is updated to reflect the broadening field of materials science and engineering. The new edition is reorganized into three major sections to align the book for practical coursework, with the first (Thermodynamic Principles) and second (Phase Equilibria) sections aimed at use in a one semester undergraduate course. The third section (Reactions and Transformations) can be used in other courses of the curriculum that deal with oxidation, energy, and phase transformations. The book is updated to include the role of work terms other than PV work (e.g., magnetic work) along with their attendant aspects of entropy, Maxwell equations, and the role of such applied fields on phase diagrams. There is also an increased emphasis on the thermodynamics of phase transformations and the Sixth Edition features an entirely new chapter 15 that links specific thermodynamic applications to the study of phase transformations. The book also features more than 50 new end of chapter problems and more than 50 new figures.

Solidification and Solid State Transformations of Metals and Alloys

Author: Maria Jose Quintana Hernandez
Publisher: Elsevier
ISBN: 9780128126080
Release Date: 2017-03-16
Genre: Technology & Engineering

Solidification and Solid-State Transformations of Metals and Alloys describes solidification and the industrial problems presented when manufacturing structural parts by casting, or semi-products for forging, in order to obtain large, flat or specifically shaped parts. Solidification follows the nucleation and growth model, which will also be applied in solid-state transformations, such as those taking place because of changes in solubility and allotropy or changes produced by recrystallization. It also explains the heat treatments that, through controlled heating, holding and cooling, allow the metals to have specific structures and properties. It also describes the correct interpretation of phase diagrams so the reader can comprehend the behaviour of iron, aluminium, copper, lead, tin, nickel, titanium, etc. and the alloys between them or with other metallic or metalloid elements. This book can be used by graduate and undergraduate students, as well as physicists, chemists and engineers who wish to study the subject of Metallic Materials and Physical Metallurgy, specifically industrial applications where casting of metals and alloys, as well as heat treatments are relevant to the quality assurance of manufacturing processes. It will be especially useful for readers with little to no knowledge on the subject, and who are looking for a book that addresses the fundamentals of manufacturing, treatment and properties of metals and alloys. Uses theoretical formulas to obtain realistic data from industrial operations Includes detailed explanations of chemical, physical and thermodynamic phenomena to allow for a more accessible approach that will appeal to a wider audience Utilizes micrographs to illustrate and demonstrate different solidification and transformation processes

Phase Equilibria Phase Diagrams and Phase Transformations

Author: Mats Hillert
Publisher: Cambridge University Press
ISBN: 9781139465861
Release Date: 2007-11-22
Genre: Technology & Engineering

Computational tools allow material scientists to model and analyze increasingly complicated systems to appreciate material behavior. Accurate use and interpretation however, requires a strong understanding of the thermodynamic principles that underpin phase equilibrium, transformation and state. This fully revised and updated edition covers the fundamentals of thermodynamics, with a view to modern computer applications. The theoretical basis of chemical equilibria and chemical changes is covered with an emphasis on the properties of phase diagrams. Starting with the basic principles, discussion moves to systems involving multiple phases. New chapters cover irreversible thermodynamics, extremum principles, and the thermodynamics of surfaces and interfaces. Theoretical descriptions of equilibrium conditions, the state of systems at equilibrium and the changes as equilibrium is reached, are all demonstrated graphically. With illustrative examples - many computer calculated - and worked examples, this textbook is an valuable resource for advanced undergraduates and graduate students in materials science and engineering.

Physical Metallurgy Principles

Author: Robert E. Reed-Hill
Publisher: Pws Publishing Company
ISBN: 0534921736
Release Date: 1992
Genre: Technology & Engineering

* Covers all aspects of physical metallurgy and behavior of metals and alloys. * Presents the principles on which metallurgy is based. * Concepts such as heat affected zone and structure-property relationships are covered. * Principles of casting are clearly outlined in the chapter on solidification. * Advanced treatment on physical metallurgy provides specialized information on metals.

Physical Metallurgy Second Edition

Author: William F. Hosford
Publisher: CRC Press
ISBN: 9781439882863
Release Date: 2010-04-05
Genre: Science

For students ready to advance in their study of metals, Physical Metallurgy, Second Edition uses engaging historical and contemporary examples that relate to the applications of concepts in each chapter. This book combines theoretical concepts, real alloy systems, processing procedures, and examples of real-world applications. The author uses his experience in teaching physical metallurgy at the University of Michigan to convey this topic with greater depth and detail than most introductory materials courses offer. What’s New in the Second Edition: Chapter on crystallographic textures and their influence on microstructure and properties Expanded section on aluminum-lithium alloys Information on copper and nickel Rewritten chapters on other non-ferrous metals and low carbon steels Discussions of compact graphite and austempered ductile iron Expanded discussions of cemented carbide tools Updated table on metal prices Following an introduction to metals, the author covers topics that are common to all metals, including solidification, diffusion, surfaces, solid solutions, intermediate phases, dislocations, annealing, and phase transformations. He also focuses on specific nonferrous alloy systems and their significant metallurgical properties and applications, the treatment of steels (including iron-carbon alloys), hardening, tempering and surface treatment, special steels, low carbon sheet steel, and cast irons. The book also covers powder metallurgy, corrosion, welding, and magnetic alloys. There are appendices on microstructural analysis, stereographic projection, and the Miller-Bravais system for hexagonal crystals. These chapters address ternary phase diagrams, diffusion in multiphase systems, the thermodynamic basis for phase diagrams, stacking faults and hydrogen embrittlement. With ample references and sample problems throughout, this text is a superb tool for any advanced materials science course.

Materials Selection in Mechanical Design

Author: Michael F. Ashby
Publisher: Butterworth-Heinemann
ISBN: 9780080952239
Release Date: 2010-10-29
Genre: Technology & Engineering

Understanding materials, their properties and behavior is fundamental to engineering design, and a key application of materials science. Written for all students of engineering, materials science and design, this book describes the procedures for material selection in mechanical design in order to ensure that the most suitable materials for a given application are identified from the full range of materials and section shapes available. Extensively revised for this fourth edition, Materials Selection in Mechanical Design is recognized as one of the leading materials selection texts, and provides a unique and genuinely innovative resource. Features new to this edition * Material property charts now in full color throughout * Significant revisions of chapters on engineering materials, processes and process selection, and selection of material and shape while retaining the book's hallmark structure and subject content * Fully revised chapters on hybrid materials and materials and the environment * Appendix on data and information for engineering materials fully updated * Revised and expanded end-of-chapter exercises and additional worked examples Materials are introduced through their properties; materials selection charts (also available on line) capture the important features of all materials, allowing rapid retrieval of information and application of selection techniques. Merit indices, combined with charts, allow optimization of the materials selection process. Sources of material property data are reviewed and approaches to their use are given. Material processing and its influence on the design are discussed. New chapters on environmental issues, industrial engineering and materials design are included, as are new worked examples, exercise materials and a separate, online Instructor's Manual. New case studies have been developed to further illustrate procedures and to add to the practical implementation of the text. * The new edition of the leading materials selection text, now with full color material property charts * Includes significant revisions of chapters on engineering materials, processes and process selection, and selection of material and shape while retaining the book's hallmark structure and subject content * Fully revised chapters on hybrid materials and materials and the environment * Appendix on data and information for engineering materials fully updated * Revised and expanded end-of-chapter exercises and additional worked examples

Geometry of Crystals Polycrystals and Phase Transformations

Author: Harshad K. D. H. Bhadeshia
Publisher: CRC Press
ISBN: 9781351629102
Release Date: 2017-09-05
Genre: Science

Organized into a two-part structure aimed at readers of differing experience levels, Geometry of Crystals, Polycrystals, and Phase Transformations is accessible to both newcomers and advanced researchers within the field of crystallography. The first part of the text covers what any reader in the material sciences, physics, chemistry, earth sciences and natural sciences in general should know about crystallography. It is intentionally concise and covers sufficient material to form a firm foundation. The second part is aimed at researchers and discusses phase transformations, deformations, and interface crystallography in depth. The phase transformations are limited to those dominated by crystallography. The entire book contains worked examples and uniquely deals not just with crystals but aggregates of crystals and solid-state transformations between crystals.