The Photosynthetic Membrane

Author: Alexander V. Ruban
Publisher: John Wiley & Sons
ISBN: 9781118447604
Release Date: 2012-09-17
Genre: Science

The proteins that gather light for plant photosynthesis are embedded within cell membranes in a site called the thylakoid membrane (or the "photosynthetic membrane"). These proteins form the light harvesting antenna that feeds with energy a number of vital photosynthetic processes such as water oxidation and oxygen evolution, the pumping of protons across the thylakoid membranes coupled with the electron transport chain of the photosystems and cytochrome b6f complex, and ATP synthesis by ATP synthase utilizing the generated proton gradient. The Photosynthetic Membrane: Molecular Mechanisms and Biophysics of Light Harvesting is an introduction to the fundamental design and function of the light harvesting photosynthetic membrane, one of the most common and most important structures of life. It describes the underlying structure of the membrane, the variety and roles of the membrane proteins, the atomic structures of light harvesting complexes and their macromolecular assemblies, the molecular mechanisms and dynamics of light harvesting and primary energy transformations, and the broad range of adaptations to different light environments. The book shows, using the example of the photosynthetic membrane, how complex biological structures utilize principles of chemistry and physics in order to carry out biological functions. The Photosynthetic Membrane: Molecular Mechanisms of Light Harvesting will appeal to a wide audience of undergraduate and postgraduate students as well as researchers working in the fields of biochemistry, molecular biology, biophysics, plant science and bioengineering.

Molecular Mechanisms of Photosynthesis

Author: Robert E. Blankenship
Publisher: John Wiley & Sons
ISBN: 9781118796962
Release Date: 2014-02-24
Genre: Science

With the clear writing and accessible approach that have made it the authoritative introduction to the field of molecular photosynthesis, this fully revised and updated edition now offers students and researchers cutting-edge topical coverage of bioenergy applications and artificial photosynthesis; advances in biochemical and genetic methods; as well as new analytical techniques. Chapters cover the origins and evolution of photosynthesis; carbon metabolism; photosynthetic organisms and organelles; and the basic principles of photosynthetic energy storage. The book's website includes downloadable PowerPoint slides.

Photosynthesis III

Author: L. Andrew Staehelin
Publisher: Springer Science & Business Media
ISBN: 9783642709364
Release Date: 2013-12-11
Genre: Science

The Encyclopedia of Plant Physiology series has turned several times to the topic of photosynthesis. In the original series, two volumes edited by A. PIRSON and published in 1960 provided a broad overview of the entire field. Although the New Series has devoted three volumes to the same topic, the overall breadth of the coverage has had to be restricted to allow for greater in-depth treatment of three major areas of modern photosynthesis research: I. Photosynthetic Elec tron Transport and Photophosphorylation (Volume 5 edited by A. TREBST and M. AvRON, and published in 1977); II. Photosynthetic Carbon Metabolism and Related Processes (Volume 6 edited by M. GIBBS and E. LATZKO, and published in 1979); and III. Photosynthetic Membranes and Light-Harvesting Systems (this volume). As we approached the organization of the current volume, we chose a set of topics for coverage that would complement the earlier volumes, as well as provide updates of areas that have seen major advances in recent years. In addition, we wanted to emphasize the following changes in the study of photo synthetic systems which have become increasingly important since 1977: the trend toward increased integration of biochemical and biophysical approaches to study photosynthetic membranes and light-harvesting systems, and a renewed appreciation of the structural parameters of membrane organization.

Light Harvesting in Photosynthesis

Author: Roberta Croce
Publisher: CRC Press
ISBN: 1482218356
Release Date: 2018-02-06
Genre:

This landmark collective work introduces the physical, chemical, and biological principles underlying photosynthesis: light absorption, excitation energy transfer, and charge separation. It begins with an introduction to properties of various pigments, and the pigment proteins in plant, algae, and bacterial systems. It addresses the underlying physics of light harvesting and key spectroscopic methods, including data analysis. It discusses assembly of the natural system, its energy transfer properties, and regulatory mechanisms. It also addresses light-harvesting in artificial systems and the impact of photosynthesis on our environment. The chapter authors are amongst the field�s world recognized experts. Chapters are divided into five main parts, the first focused on pigments, their properties and biosynthesis, and the second section looking at photosynthetic proteins, including light harvesting in higher plants, algae, cyanobacteria, and green bacteria. The third part turns to energy transfer and electron transport, discussing modeling approaches, quantum aspects, photoinduced electron transfer, and redox potential modulation, followed by a section on experimental spectroscopy in light harvesting research. The concluding final section includes chapters on artificial photosynthesis, with topics such as use of cyanobacteria and algae for sustainable energy production. Robert Croce is Head of the Biophysics Group and full professor in biophysics of photosynthesis/energy at Vrije Universiteit, Amsterdam. Rienk van Grondelle is full professor at Vrije Universiteit, Amsterdam. Herbert van Amerongen is full professor of biophysics in the Department of Agrotechnology and Food Sciences at Wageningen University, where he is also director of the MicroSpectroscopy Research Facility. Ivo van Stokkum is associate professor in the Department of Physics and Astronomy, Faculty of Sciences, at Vrije Universiteit, Amsterdam.

Biophysical Techniques

Author: Iain Campbell
Publisher: Oxford University Press
ISBN: 9780199642144
Release Date: 2012-02-16
Genre: Medical

Biophysical Techniques explains in a readily-accessible way the basics of the various biophysical methods available so students can understand the principles behind the different methods used, and begin to appreciate which tools can be used to probe different biological questions, and the pros and cons of each.

Non Photochemical Quenching and Energy Dissipation in Plants Algae and Cyanobacteria

Author: Barbara Demmig-Adams
Publisher: Springer
ISBN: 9789401790321
Release Date: 2014-11-22
Genre: Science

Harnessing the sun’s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on photoprotection against intense sunlight, starting with the safe removal of excess excitation energy from the light-harvesting system, which can be quickly and non-destructively assessed via non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing NPQ into the context of whole-organism function, this book aims to contribute towards identification of plant and algal lines with superior stress resistance and productivity. By addressing agreements and open questions concerning photoprotection’s molecular mechanisms, this book contributes towards development of artificial photosynthetic systems. A comprehensive picture –from single molecules to organisms in ecosystems, and from leading expert’s views to practical information for non-specialists on NPQ measurement and terminology – is presented.

Photoprotection in Plants

Author: Alexei Solovchenko
Publisher: Springer Science & Business Media
ISBN: 364213887X
Release Date: 2010-08-18
Genre: Science

Optical screening of excessive and potentially harmful solar radiation is an important photoprotective mechanism, though it has received much less attention in comparison with other systems preventing photooxidative damage to photoautotrophic organisms. This photoprotection in the form of screening appears to be especially important for juvenile and senescing plants as well as under environmental stresses—i.e. in situations where the efficiency of enzymatic ROS elimination, DNA repair and other ‘classical’ photoprotective systems could be impaired. This book represents an attempt to develop an integral view of optical screening-based photoprotection in microalgae and higher plants. Towards this end, the key groups of pigments involved in the screening of ultraviolet and visible components of solar radiation in microalgae and higher plants, and the patterns of their accumulation and distribution within plant cells and tissues, are described. Special attention is paid to the manifestations of screening pigment accumulation in the optical spectra of plants. It is also demonstrated that understanding these effects and their relationships to screening pigments’ makeup and spectroscopy in plants provides valuable insights into the state of plants’ long-term photoacclimation, as well as ample opportunities for the non-destructive quantification of screening pigments and the assessment of the efficiency of photoprotection providing by these pigments in situ.

Light Harvesting Antennas in Photosynthesis

Author: Beverley Green
Publisher: Springer Science & Business Media
ISBN: 9789401720878
Release Date: 2013-06-29
Genre: Science

Light-Harvesting Antennas in Photosynthesis is concerned with the most important process on earth - the harvesting of light energy by photosynthetic organisms. This book provides a comprehensive treatment of all aspects of photosynthetic light-harvesting antennas, from the biophysical mechanisms of light absorption and energy transfer to the structure, biosynthesis and regulation of antenna systems in whole organisms. It sets the great variety of antenna pigment-protein complexes in their evolutionary context and at the same time brings in the latest hi-tech developments. The book is unique in the degree to which it emphasizes the integration of molecular biological, biochemical and biophysical approaches. Overall, a well-organized, understandable, and comprehensive volume. It will be a valuable resource for both graduate students and their professors, and a helpful library reference book for undergraduates.

Photosynthesis Structures Mechanisms and Applications

Author: Harvey J.M. Hou
Publisher: Springer
ISBN: 9783319488738
Release Date: 2017-06-02
Genre: Science

To address the environmental, socioeconomic, and geopolitical issues associated with increasing global human energy consumption, technologies for utilizing renewable carbon-free or carbon-neutral energy sources must be identified and developed. Among renewable sources, solar energy is quite promising as it alone is sufficient to meet global human demands well into the foreseeable future. However, it is diffuse and diurnal. Thus effective strategies must be developed for its capture, conversion and storage. In this context, photosynthesis provides a paradigm for large-scale deployment. Photosynthesis occurs in plants, algae, and cyanobacteria and has evolved over 3 billion years. The process of photosynthesis currently produces more than 100 billion tons of dry biomass annually, which equates to a global energy storage rate of ~100 TW. Recently, detailed structural information on the natural photosynthetic systems has been acquired at the molecular level, providing a foundation for comprehensive functional studies of the photosynthetic process. Likewise, sophisticated spectroscopic techniques have revealed important mechanistic details. Such accomplishments have made it possible for scientists and engineers to construct artificial systems for solar energy transduction that are inspired by their biological counterparts. The book contains articles written by experts and world leaders in their respective fields and summarizes the exciting breakthroughs toward understanding the structures and mechanisms of the photosynthetic apparatus as well as efforts toward developing revolutionary new energy conversion technologies. The topics/chapters will be organized in terms of the natural sequence of events occurring in the process of photosynthesis, while keeping a higher-order organization of structure and mechanism as well as the notion that biology can inspire human technologies. For example, the topic of light harvesting, will be followed by charge separation at reaction centers, followed by charge stabilization, followed by chemical reactions, followed by protection mechanisms, followed by other more specialized topics and finally ending with artificial systems and looking forward. As shown in the table of contents (TOC), the book includes and integrates topics on the structures and mechanisms of photosynthesis, and provides relevant information on applications to bioenergy and solar energy transduction.

The Physiology of Microalgae

Author: Michael A. Borowitzka
Publisher: Springer
ISBN: 9783319249452
Release Date: 2016-03-21
Genre: Science

This book covers the state-of-the-art of microalgae physiology and biochemistry (and the several –omics). It serves as a key reference work for those working with microalgae, whether in the lab, the field, or for commercial applications. It is aimed at new entrants into the field (i.e. PhD students) as well as experienced practitioners. It has been over 40 years since the publication of a book on algal physiology. Apart from reviews and chapters no other comprehensive book on this topic has been published. Research on microalgae has expanded enormously since then, as has the commercial exploitation of microalgae. This volume thoroughly deals with the most critical physiological and biochemical processes governing algal growth and production.

Chloroplasts

Author: Helmut Kirchhoff
Publisher: Caister Academic Press
ISBN: 9781910190487
Release Date: 2016-08-15
Genre: Science

The chloroplast organelle in plants not only forms the platform for photosynthetic energy conversion that fuels life on earth but is also a highly dynamic anabolic factory generating a great variety of primary and secondary metabolites. This authoritative book reflects the diversity of the research field on chloroplast biology ranging from the biophysical principles of energy conversion over metabolic regulation and ion transport to identification of unique plastid proteins by the systems-biology based green cut project. The chapters are written by renowned experts in their fields and provide state-of-the-art overviews of their current research. Each chapter ends with a section on future trends that projects where the research could be in the next five to ten years. The book is recommended to readers seeking an overview on chloroplast biology as well as scientists looking for detailed up-to-date information.

Quantitative Biology

Author: Michael E. Wall
Publisher: CRC Press
ISBN: 9781439827222
Release Date: 2012-08-25
Genre: Science

Quantitative methods are revolutionizing modern molecular and cellular biology. Groundbreaking technical advances are fueling the rapid expansion in our ability to observe, as seen in multidisciplinary studies that integrate theory, computation, experimental assays, and the control of microenvironments. Integrating new experimental and theoretical methods, Quantitative Biology: From Molecular to Cellular Systems gives both new and established researchers a solid foundation for starting work in this field. The book is organized into three sections: Fundamental Concepts covers bold ideas that inspire novel approaches in modern quantitative biology. It offers perspectives on evolutionary dynamics, system design principles, chance and memory, and information processing in biology. Methods describes recently developed or improved techniques that are transforming biological research. It covers experimental methods for studying single-molecule biochemistry, small-angle scattering from biomolecules, subcellular localization of proteins, and single-cell behavior. It also describes theoretical methods for synthetic biology and modeling random variations among cells. Molecular and Cellular Systems focuses on specific biological systems where modern quantitative biology methods are making an impact. It incorporates case studies of biological systems for which new concepts or methods are increasing our understanding. Examples include protein kinase at the molecular level, the genetic switch of phage lambda at the regulatory system level, and Escherichia coli chemotaxis at the cellular level. In short, Quantitative Biology presents practical tools for the observation, modeling, design, and manipulation of biological systems from the molecular to the cellular levels.

Non Photochemical Quenching and Energy Dissipation in Plants Algae and Cyanobacteria

Author: Barbara Demmig-Adams
Publisher: Springer
ISBN: 9789401790321
Release Date: 2014-11-22
Genre: Science

Harnessing the sun’s energy via photosynthesis is at the core of sustainable production of food, fuel, and materials by plants, algae, and cyanobacteria. Photosynthesis depends on photoprotection against intense sunlight, starting with the safe removal of excess excitation energy from the light-harvesting system, which can be quickly and non-destructively assessed via non-photochemical quenching of chlorophyll fluorescence (NPQ). By placing NPQ into the context of whole-organism function, this book aims to contribute towards identification of plant and algal lines with superior stress resistance and productivity. By addressing agreements and open questions concerning photoprotection’s molecular mechanisms, this book contributes towards development of artificial photosynthetic systems. A comprehensive picture –from single molecules to organisms in ecosystems, and from leading expert’s views to practical information for non-specialists on NPQ measurement and terminology – is presented.

Photosynthesis

Author: Roderick K. Clayton
Publisher: Cambridge University Press
ISBN: 0521294436
Release Date: 1980
Genre: Medical

Life on earth depends on the photosynthetic use of solar energy by plants, and efforts to develop alternative sources of energy include a major thrust toward the use of photosynthesis to yield fuels. The study of photosynthesis is an especially convincing way of bringing together the disciplines of physics, chemistry, and biology and can be a valuable element in the teaching of biophysics and biochemistry. This book provides the only detailed modern treatment of the subject in a concise form. Part I outlines the historical development of the subject, emphasizing the chemical nature of photosynthesis and the roles of chlorophylls and other pigments. Part II reviews our present knowledge of the structure and components of photosynthetic tissues in relation to their function. Part III deals with the photo-chemistry of photosynthesis and with the patterns of chemical events, principally electron and proton transfer, that follow the photo-chemistry. Part IV treats the relationships of electron and proton transport to ATP formation, and the metabolic patterns of carbon assimilation. An epilogue exposes major areas of confusion and ignorance and indicates potentially fruitful directions of research, including the development of photosynthetic systems for solar energy conversion. Throughout the book, there are frequent digressions into those aspects of optics and molecular physics relevant to the subject matter. Suitable for upper undergraduate and graduate course use, this book is also sufficiently detailed to give professional scientists a perspective of the subject at the level of contemporary research.

Artificial Photosynthesis

Author:
Publisher: Academic Press
ISBN: 9780128033258
Release Date: 2016-06-13
Genre: Science

Artificial Photosynthesis, the latest edition in the Advances in Botanical Research series, which publishes in-depth and up-to-date reviews on a wide range of topics in the plant sciences features several reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology. Publishes in-depth and up-to-date reviews on a wide range of topics in plant sciences Presents the latest information on artificial photosynthesis Features a wide range of reviews by recognized experts on all aspects of plant genetics, biochemistry, cell biology, molecular biology, physiology, and ecology