Population Genetics

Author: John H. Gillespie
Publisher: JHU Press
ISBN: 1421401703
Release Date: 2010-12-29
Genre: Science

This book is indispensable for students working in a laboratory setting or studying free-ranging populations.

Population Genetics

Author: John H. Gillespie
Publisher: JHU Press
ISBN: 9780801880087
Release Date: 2004-06-28
Genre: Medical

This concise introduction addresses the theories behind population genetics and relevant empirical evidence, genetic drift, natural selection, nonrandom mating, quantitative genetics, and the evolutionary advantage of sex.

Population Genetics

Author: John H. Gillespie
Publisher:
ISBN: 0801857546
Release Date: 1998
Genre: Science

"In a species with a million individuals," writes John H. Gillespie, "it takes roughly a million generations for genetic drift to change allele frequencies appreciably. There is no conceivable way of verifying that genetic drift changes allele frequencies in most natural populations. Our understanding that it does is entirely theoretical. Most population geneticists are not only comfortable with this state of affairs, but revel in the fact that they can demonstrate on the back of an envelope, rather than in the laboratory, how an important evolutionary force operates." Longer than the back of an envelope but more concise than many books on the subject, this brief introduction to the field of population genetics offers students and researchers an overview of a discipline that is of growing importance. Chapter topics include genetic drift; natural selection; non-random mating, quantitative genetics; and the evolutionary advantage of sex. While each chapter treats a specific topic or problem in genetics, the common thread throughout the book is what Gillespie calls "the main obsession of our field," the recurring question, "Why is there so much genetic variation in natural populations?" "Population genetics remains the central intellectual connection between genetics and evolution. As genetics becomes integral to all aspects of biology, the unifying nature of evolutionary studies rests more and more on population genetics. This book lays out much of the foundation of population genetics augmented with interesting particulars and conceptual insight. Population genetics involves ideas that are quantitative and often difficult for biology undergraduates, but Professor Gillespie offershis characteristically clear thinking and articulate explanations." -- Charles Langley, University of California-Davis

Population Genetics

Author: Matthew Hamilton
Publisher: John Wiley & Sons
ISBN: 9781444362459
Release Date: 2011-09-23
Genre: Science

This book aims to make population genetics approachable, logical and easily understood. To achieve these goals, the book’s design emphasizes well explained introductions to key principles and predictions. These are augmented with case studies as well as illustrations along with introductions to classical hypotheses and debates. Pedagogical features in the text include: Interact boxes that guide readers step-by-step through computer simulations using public domain software. Math boxes that fully explain mathematical derivations. Methods boxes that give insight into the use of actual genetic data. Numerous Problem boxes are integrated into the text to reinforce concepts as they are encountered. Dedicated website at www.wiley.com/go/hamiltongenetics This text also offers a highly accessible introduction to coalescent theory, the major conceptual advance in population genetics of the last two decades.

Population Genetics and Microevolutionary Theory

Author: Alan R. Templeton
Publisher: John Wiley & Sons
ISBN: 9780470047217
Release Date: 2006-09-29
Genre: Science

The advances made possible by the development of molecular techniques have in recent years revolutionized quantitative genetics and its relevance for population genetics. Population Genetics and Microevolutionary Theory takes a modern approach to population genetics, incorporating modern molecular biology, species-level evolutionary biology, and a thorough acknowledgment of quantitative genetics as the theoretical basis for population genetics. Logically organized into three main sections on population structure and history, genotype-phenotype interactions, and selection/adaptation Extensive use of real examples to illustrate concepts Written in a clear and accessible manner and devoid of complex mathematical equations Includes the author's introduction to background material as well as a conclusion for a handy overview of the field and its modern applications Each chapter ends with a set of review questions and answers Offers helpful general references and Internet links

Elements of Evolutionary Genetics

Author: Brian Charlesworth
Publisher: Roberts Publishers
ISBN: STANFORD:36105215340113
Release Date: 2010
Genre: Science

Evolutionary genetics considers the causes of evolutionary change and the nature of variability in evolution. The methods of evolutionary genetics are critically important for the analysis and interpretation of the massive datasets on DNA sequence variation and evolution that are becoming available, as well for our understanding of evolution in general. This book shows readers how models of the genetic processes involved in evolution are made (including natural selection, migration, mutation, and genetic drift in finite populations), and how the models are used to interpret classical and molecular genetic data. The material is intended for advanced level undergraduate courses in genetics and evolutionary biology, graduate students in evolutionary biology and human genetics, and researchers in related fields who wish to learn evolutionary genetics. The topics covered include genetic variation, DNA sequence variability and its measurement, the different types of natural selection and their effects (e.g. the maintenance of variation, directional selection, and adaptation), the interactions between selection and mutation or migration, the description and analysis of variation at multiple sites in the genome, genetic drift, and the effects of spatial structure. The final two chapters demonstrate how the theory illuminates our understanding of the evolution of breeding systems, sex ratios and life histories, and some aspects of genome evolution.

Understanding Population Genetics

Author: Torbj?rn S?ll
Publisher: John Wiley & Sons
ISBN: 9781119124030
Release Date: 2017-10-02
Genre: Science

"The reader is taken through ten mathematical derivations that lead to important results, explaining in a hands-on manner the key concepts and methods of theoretical population genetics. The derivations are carefully worked out and easy to follow. Particular attention is given to the underlying assumptions and the mathematics used. The results are discussed and broadened out with relevant current implications. All topics feature questions with helpful answers"--Provided by publisher.

Mathematical Population Genetics 1

Author: Warren J. Ewens
Publisher: Springer Science & Business Media
ISBN: 0387201912
Release Date: 2004-01-09
Genre: Science

This is the first of a planned two-volume work discussing the mathematical aspects of population genetics with an emphasis on evolutionary theory. This volume draws heavily from the author’s 1979 classic, but it has been revised and expanded to include recent topics which follow naturally from the treatment in the earlier edition, such as the theory of molecular population genetics.

Introduction to Population Genetics

Author: Richard Halliburton
Publisher: Benjamin-Cummings Publishing Company
ISBN: 0130163805
Release Date: 2004
Genre: Science

Making the theory of population genetics relevant to readers, this book explains the related mathematics with a logical organization.It presents the quantitative aspects of population genetics, and employs examples of human genetics, medical evolution, human evolution, and endangered species.For an introduction to, and understanding of, population genetics.

An Introduction to Population Genetics

Author: Rasmus Nielsen
Publisher: Sinauer Associates Incorporated
ISBN: 1605351539
Release Date: 2013
Genre: Science

"A text for a one-semester course in population genetics. It introduces students to classical population genetics (in terms of allele and haplotype frequencies) and modern population genetics (in terms of coalescent theory). It presents numerous applications of population genetic methods to practical problems, including testing for natural selection, detecting genetic hitchhiking and inferring the history of populations"--Provided by publisher.

Evolution in Age Structured Populations

Author: Brian Charlesworth
Publisher: Cambridge University Press
ISBN: 0521459672
Release Date: 1994-06-30
Genre: Mathematics

In this new edition, Brian Charlesworth provides a comprehensive review of the basic mathematical theory of the demography and genetics of age-structured populations. The author aims to avoid complicated mathematics, but gives full derivations of major theoretical results for the edification of the reader.

Probability Models for DNA Sequence Evolution

Author: Richard Durrett
Publisher: Springer Science & Business Media
ISBN: 0387781692
Release Date: 2008-12-15
Genre: Mathematics

"What underlying forces are responsible for the observed patterns of variability, given a collection of DNA sequences?" In approaching this question a number of probability models are introduced and anyalyzed.Throughout the book, the theory is developed in close connection with data from more than 60 experimental studies that illustrate the use of these results.

Coalescent Theory

Author: John Wakeley
Publisher: Roberts Publishers
ISBN: 0974707759
Release Date: 2009
Genre: Medical

"An introduction to coalescent theory, which provides the foundation for molecular population genetics and genomics. Coalescent theory is the conceptual framework for studies of DNA sequence variation within species, and is the source of essential tools for making inferences about mutation, recombination, population structure and natural selection from DNA sequence data"--Provided by publisher.

A Biologist s Guide to Mathematical Modeling in Ecology and Evolution

Author: Sarah P. Otto
Publisher: Princeton University Press
ISBN: 9781400840915
Release Date: 2011-09-19
Genre: Science

Thirty years ago, biologists could get by with a rudimentary grasp of mathematics and modeling. Not so today. In seeking to answer fundamental questions about how biological systems function and change over time, the modern biologist is as likely to rely on sophisticated mathematical and computer-based models as traditional fieldwork. In this book, Sarah Otto and Troy Day provide biology students with the tools necessary to both interpret models and to build their own. The book starts at an elementary level of mathematical modeling, assuming that the reader has had high school mathematics and first-year calculus. Otto and Day then gradually build in depth and complexity, from classic models in ecology and evolution to more intricate class-structured and probabilistic models. The authors provide primers with instructive exercises to introduce readers to the more advanced subjects of linear algebra and probability theory. Through examples, they describe how models have been used to understand such topics as the spread of HIV, chaos, the age structure of a country, speciation, and extinction. Ecologists and evolutionary biologists today need enough mathematical training to be able to assess the power and limits of biological models and to develop theories and models themselves. This innovative book will be an indispensable guide to the world of mathematical models for the next generation of biologists. A how-to guide for developing new mathematical models in biology Provides step-by-step recipes for constructing and analyzing models Interesting biological applications Explores classical models in ecology and evolution Questions at the end of every chapter Primers cover important mathematical topics Exercises with answers Appendixes summarize useful rules Labs and advanced material available

The Origins of Genome Architecture

Author: Michael Lynch
Publisher: Sinauer Associates Incorporated
ISBN: UOM:49015003406510
Release Date: 2007
Genre: Medical

The availability of genomic blueprints for hundreds of species has led to a transformation in biology, encouraging the proliferation of adaptive arguments for the evolution of genomic features, yet often sacrificing simpler, more compelling explanations. This textbook explains why the details matter and presents an explanatory framework for how the architectural diversity of eukarotic genomes and genes came to arise. Presented in non-technical fashion, it is compatible for use in an advanced Genetics course and as a professional reference.