Classification of Higher Dimensional Algebraic Varieties

Author: Christopher D. Hacon
Publisher: Springer Science & Business Media
ISBN: 9783034602907
Release Date: 2011-02-02
Genre: Mathematics

Higher Dimensional Algebraic Geometry presents recent advances in the classification of complex projective varieties. Recent results in the minimal model program are discussed, and an introduction to the theory of moduli spaces is presented.

Positivity in Algebraic Geometry I

Author: R.K. Lazarsfeld
Publisher: Springer Science & Business Media
ISBN: 3540225331
Release Date: 2004-08-24
Genre: Mathematics

This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.

Affine Algebraic Geometry

Author: Kayo Masuda
Publisher: World Scientific
ISBN: 9789814436700
Release Date: 2013
Genre: Mathematics

The present volume grew out of an international conference on affine algebraic geometry held in Osaka, Japan during 3-6 March 2011 and is dedicated to Professor Masayoshi Miyanishi on the occasion of his 70th birthday. It contains 16 refereed articles in the areas of affine algebraic geometry, commutative algebra and related fields, which have been the working fields of Professor Miyanishi for almost 50 years. Readers will be able to find recent trends in these areas too. The topics contain both algebraic and analytic, as well as both affine and projective, problems. All the results treated in this volume are new and original which subsequently will provide fresh research problems to explore. This volume is suitable for graduate students and researchers in these areas.

Hodge Theory Complex Geometry and Representation Theory

Author: Robert S. Doran
Publisher: American Mathematical Soc.
ISBN: 9780821894156
Release Date: 2014
Genre: Mathematics

This volume contains the proceedings of an NSF/Conference Board of the Mathematical Sciences (CBMS) regional conference on Hodge theory, complex geometry, and representation theory, held on June 18, 2012, at the Texas Christian University in Fort Worth, TX. Phillip Griffiths, of the Institute for Advanced Study, gave 10 lectures describing now-classical work concerning how the structure of Shimura varieties as quotients of Mumford-Tate domains by arithmetic groups had been used to understand the relationship between Galois representations and automorphic forms. He then discussed recent breakthroughs of Carayol that provide the possibility of extending these results beyond the classical case. His lectures will appear as an independent volume in the CBMS series published by the AMS. This volume, which is dedicated to Phillip Griffiths, contains carefully written expository and research articles. Expository papers include discussions of Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of SL2(R). Research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of Q-algebraic groups, and compactifications, distributions, and quotients of period domains. It is expected that the book will be of interest primarily to research mathematicians, physicists, and upper-level graduate students.

Birational Geometry of Algebraic Varieties

Author: Janos Kollár
Publisher: Cambridge University Press
ISBN: 0521060222
Release Date: 2008-02-04
Genre: Mathematics

This book provides the first comprehensive introduction to the circle of ideas developed around Mori's program.

Fourier Mukai Transforms in Algebraic Geometry

Author: Daniel Huybrechts
Publisher: Oxford University Press on Demand
ISBN: 9780199296866
Release Date: 2006-04-20
Genre: Mathematics

This work is based on a course given at the Institut de Mathematiques de Jussieu, on the derived category of coherent sheaves on a smooth projective variety. It is aimed at students with a basic knowledge of algebraic geometry and contains full proofs and exercises that aid the reader.

Information Geometry

Author: Nihat Ay
Publisher: Springer
ISBN: 9783319564784
Release Date: 2017-08-25
Genre: Mathematics

The book provides a comprehensive introduction and a novel mathematical foundation of the field of information geometry with complete proofs and detailed background material on measure theory, Riemannian geometry and Banach space theory. Parametrised measure models are defined as fundamental geometric objects, which can be both finite or infinite dimensional. Based on these models, canonical tensor fields are introduced and further studied, including the Fisher metric and the Amari-Chentsov tensor, and embeddings of statistical manifolds are investigated. This novel foundation then leads to application highlights, such as generalizations and extensions of the classical uniqueness result of Chentsov or the Cramér-Rao inequality. Additionally, several new application fields of information geometry are highlighted, for instance hierarchical and graphical models, complexity theory, population genetics, or Markov Chain Monte Carlo. The book will be of interest to mathematicians who are interested in geometry, information theory, or the foundations of statistics, to statisticians as well as to scientists interested in the mathematical foundations of complex systems.

Real Solutions to Equations from Geometry

Author: Frank Sottile
Publisher: American Mathematical Soc.
ISBN: 9780821853313
Release Date: 2011-08-31
Genre: Mathematics

Understanding, finding, or even deciding on the existence of real solutions to a system of equations is a difficult problem with many applications outside of mathematics. While it is hopeless to expect much in general, we know a surprising amount about these questions for systems which possess additional structure often coming from geometry. This book focuses on equations from toric varieties and Grassmannians. Not only is much known about these, but such equations are common in applications. There are three main themes: upper bounds on the number of real solutions, lower bounds on the number of real solutions, and geometric problems that can have all solutions be real. The book begins with an overview, giving background on real solutions to univariate polynomials and the geometry of sparse polynomial systems. The first half of the book concludes with fewnomial upper bounds and with lower bounds to sparse polynomial systems. The second half of the book begins by sampling some geometric problems for which all solutions can be real, before devoting the last five chapters to the Shapiro Conjecture, in which the relevant polynomial systems have only real solutions.

An Introduction to Invariants and Moduli

Author: Shigeru Mukai
Publisher: Cambridge University Press
ISBN: 0521809061
Release Date: 2003-09-08
Genre: Mathematics

Incorporated in this volume are the first two books in Mukai's series on Moduli Theory. The notion of a moduli space is central to geometry. However, it's influence is not confined there; for example the theory of moduli spaces is a crucial ingredient in the proof of Fermat's last theorem. An accurate account of Mukai's influential Japanese texts, this tranlation will be a valuable resource for researchers and graduate students working in a range of areas.

The Lefschetz Properties

Author: Tadahito Harima
Publisher: Springer
ISBN: 9783642382062
Release Date: 2013-08-23
Genre: Mathematics

This is a monograph which collects basic techniques, major results and interesting applications of Lefschetz properties of Artinian algebras. The origin of the Lefschetz properties of Artinian algebras is the Hard Lefschetz Theorem, which is a major result in algebraic geometry. However, for the last two decades, numerous applications of the Lefschetz properties to other areas of mathematics have been found, as a result of which the theory of the Lefschetz properties is now of great interest in its own right. It also has ties to other areas, including combinatorics, algebraic geometry, algebraic topology, commutative algebra and representation theory. The connections between the Lefschetz property and other areas of mathematics are not only diverse, but sometimes quite surprising, e.g. its ties to the Schur-Weyl duality. This is the first book solely devoted to the Lefschetz properties and is the first attempt to treat those properties systematically.

Flips for 3 folds and 4 folds

Author: Alessio Corti
Publisher: Oxford University Press
ISBN: 9780198570615
Release Date: 2007-06-28
Genre: Mathematics

Aimed at graduates and researchers in algebraic geometry, this collection of edited chapters provides a complete and essentially self-contained account of the construction of 3-fold and 4-fold klt flips.

Lectures on Invariant Theory

Author: Igor Dolgachev
Publisher: Cambridge University Press
ISBN: 0521525489
Release Date: 2003-08-07
Genre: Mathematics

The primary goal of this 2003 book is to give a brief introduction to the main ideas of algebraic and geometric invariant theory. It assumes only a minimal background in algebraic geometry, algebra and representation theory. Topics covered include the symbolic method for computation of invariants on the space of homogeneous forms, the problem of finite-generatedness of the algebra of invariants, the theory of covariants and constructions of categorical and geometric quotients. Throughout, the emphasis is on concrete examples which originate in classical algebraic geometry. Based on lectures given at University of Michigan, Harvard University and Seoul National University, the book is written in an accessible style and contains many examples and exercises. A novel feature of the book is a discussion of possible linearizations of actions and the variation of quotients under the change of linearization. Also includes the construction of toric varieties as torus quotients of affine spaces.