Author: J. W. Downs
Publisher: Courier Corporation
ISBN: 9780486148885
Release Date: 2012-10-16
Genre: Mathematics

Using examples from everyday life, this text studies ellipses, parabolas, and hyperbolas. Explores their ancient origins and describes the reflective properties and roles of curves in design applications. 1993 edition. Includes 98 figures.

Author: Arseny V. Akopyan
Publisher: American Mathematical Soc.
ISBN: 0821884328
Release Date:
Genre: Mathematics

"Geometry Of Conics deals with the properties of conics (plane curves of second degree) that can be formulated and proved using only elementary geometry. Starting with the well-known optical properties of conics, this book moves to less trivial results, both classical and contemporary. It demonstrates the advantage of purely geometric methods of studying conics."--Publisher's website.

This concise text introduces students to analytical geometry, covering basic ideas and methods. Readily intelligible to any student with a sound mathematical background, it is designed both for undergraduates and for math majors. It will prove particularly valuable in preparing readers for more advanced treatments. The text begins with an overview of the analytical geometry of the straight line, circle, and the conics in their standard forms. It proceeds to discussions of translations and rotations of axes, and of the general equation of the second degree. The concept of the line at infinity is introduced, and the main properties of conics and pencils of conics are derived from the general equation. The fundamentals of cross-ratio, homographic correspondence, and line-coordinates are explored, including applications of the latter to focal properties. The final chapter provides a compact account of generalized homogeneous coordinates, and a helpful appendix presents solutions to many of the examples.

Author: Charles Stanley Ogilvy
Publisher: Courier Corporation
ISBN: 9780486265308
Release Date: 1990
Genre: Mathematics

A straightedge, compass, and a little thought are all that's needed to discover the intellectual excitement of geometry. Harmonic division and Apollonian circles, inversive geometry, hexlet, Golden Section, more. 132 illustrations.

Author: Keith Kendig
Publisher: Cambridge University Press
ISBN: 0883853353
Release Date: 2005-08-11
Genre: Mathematics

This book engages the reader in a journey of discovery through a spirited discussion among three characters: Philosopher, Teacher and Student. Throughout the book, Philosopher pursues his dream of a unified theory of conics, where exceptions are banished. With a helpful teacher and example-hungry student, the trio soon finds that conics reveal much of their beauty when viewed over the complex numbers. It is profusely illustrated with pictures, worked-out examples, and a CD containing 36 applets. Conics is written in an easy, conversational style, and many historical tidbits and other points of interest are scattered throughout the text. Many students can self-study the book without outside help. This book is ideal for anyone having a little exposure to linear algebra and complex numbers.

Author: Robert Bix
Publisher: Springer Science & Business Media
ISBN: 9781475729757
Release Date: 2013-03-14
Genre: Mathematics

Algebraic curves are the graphs of polynomial equations in two vari 3 ables, such as y3 + 5xy2 = x + 2xy. By focusing on curves of degree at most 3-lines, conics, and cubics-this book aims to fill the gap between the familiar subject of analytic geometry and the general study of alge braic curves. This text is designed for a one-semester class that serves both as a a geometry course for mathematics majors in general and as a sequel to college geometry for teachers of secondary school mathe matics. The only prerequisite is first-year calculus. On the one hand, this book can serve as a text for an undergraduate geometry course for all mathematics majors. Algebraic geometry unites algebra, geometry, topology, and analysis, and it is one of the most exciting areas of modem mathematics. Unfortunately, the subject is not easily accessible, and most introductory courses require a prohibitive amount of mathematical machinery. We avoid this problem by focusing on curves of degree at most 3. This keeps the results tangible and the proofs natural. It lets us emphasize the power of two fundamental ideas, homogeneous coordinates and intersection multiplicities.

Author: Victor Gutenmacher
Publisher: Springer Science & Business Media
ISBN: 9781475738094
Release Date: 2013-03-14
Genre: Mathematics

Broad appeal to undergraduate teachers, students, and engineers; Concise descriptions of properties of basic planar curves from different perspectives; useful handbook for software engineers; A special chapter---"Geometry on the Web"---will further enhance the usefulness of this book as an informal tutorial resource.; Good mathematical notation, descriptions of properties of lines and curves, and the illustration of geometric concepts facilitate the design of computer graphics tools and computer animation.; Video game designers, for example, will find a clear discussion and illustration of hard-to-understand trajectory design concepts.; Good supplementary text for geometry courses at the undergraduate and advanced high school levels

Author: Roger R. Bate
Publisher: Courier Corporation
ISBN: 0486600610
Release Date: 1971
Genre: Technology & Engineering

Teaching text developed by U.S. Air Force Academy and designed as a first course emphasizes the universal variable formulation. Develops the basic two-body and n-body equations of motion; orbit determination; classical orbital elements, coordinate transformations; differential correction; more. Includes specialized applications to lunar and interplanetary flight, example problems, exercises. 1971 edition.

Author: Arthur Mazer
Publisher: John Wiley & Sons
ISBN: 9781118211434
Release Date: 2011-09-26
Genre: Mathematics

Explores the development of the ellipse and presents mathematical concepts within a rich, historical context The Ellipse features a unique, narrative approach when presenting the development of this mathematical fixture, revealing its parallels to mankind's advancement from the Counter-Reformation to the Enlightenment. Incorporating illuminating historical background and examples, the author brings together basic concepts from geometry, algebra, trigonometry, and calculus to uncover the ellipse as the shape of a planet's orbit around the sun. The book begins with a discussion that tells the story of man's pursuit of the ellipse, from Aristarchus to Newton's successful unveiling nearly two millenniums later. The narrative draws insightful similarities between mathematical developments and the advancement of the Greeks, Romans, Medieval Europe, and Renaissance Europe. The author begins each chapter by setting the historical backdrop that is pertinent to the mathematical material that is discussed, equipping readers with the knowledge to fully grasp the presented examples and derive the ellipse as the planetary pathway. All topics are presented in both historical and mathematical contexts, and additional mathematical excursions are clearly marked so that readers have a guidepost for the materials' relevance to the development of the ellipse. The Ellipse is an excellent book for courses on the history of mathematics at the undergraduate level. It is also a fascinating reference for mathematicians, engineers, or anyone with a general interest in historical mathematics.

This study of many important curves, their geometrical properties, and their applications features material not customarily treated in texts on synthetic or analytic Euclidean geometry. 1950 edition.

Introduction to vector algebra in the plane; circles and coaxial systems; mappings of the Euclidean plane; similitudes, isometries, Moebius transformations, much more. Includes over 500 exercises.

The great work that founded analytical geometry. Includes the original French text, Descartes' own diagrams, and the definitive Smith-Latham translation. "The greatest single step ever made in the progress of the exact sciences." — John Stuart Mill.

Lively and authoritative, this survey by a renowned physicist explains the formation of the galaxies and defines the concept of an ever-expanding universe in simple terms. 1961 edition. 40 figures.