Practical Text Mining with Perl

Author: Roger Bilisoly
Publisher: John Wiley & Sons
ISBN: 9781118210505
Release Date: 2011-09-20
Genre: Computers

Provides readers with the methods, algorithms, and means toperform text mining tasks This book is devoted to the fundamentals of text mining usingPerl, an open-source programming tool that is freely available viathe Internet (www.perl.org). It covers mining ideas from severalperspectives--statistics, data mining, linguistics, and informationretrieval--and provides readers with the means to successfullycomplete text mining tasks on their own. The book begins with an introduction to regular expressions, atext pattern methodology, and quantitative text summaries, all ofwhich are fundamental tools of analyzing text. Then, it builds uponthis foundation to explore: Probability and texts, including the bag-of-words model Information retrieval techniques such as the TF-IDF similaritymeasure Concordance lines and corpus linguistics Multivariate techniques such as correlation, principalcomponents analysis, and clustering Perl modules, German, and permutation tests Each chapter is devoted to a single key topic, and the authorcarefully and thoughtfully introduces mathematical concepts as theyarise, allowing readers to learn as they go without having to referto additional books. The inclusion of numerous exercises andworked-out examples further complements the book's student-friendlyformat. Practical Text Mining with Perl is ideal as a textbookfor undergraduate and graduate courses in text mining and as areference for a variety of professionals who are interested inextracting information from text documents.

Data Mining and Learning Analytics

Author: Samira ElAtia
Publisher: John Wiley & Sons
ISBN: 9781118998212
Release Date: 2016-09-20
Genre: Computers

Addresses the impacts of data mining on education and reviews applications in educational research teaching, and learning This book discusses the insights, challenges, issues, expectations, and practical implementation of data mining (DM) within educational mandates. Initial series of chapters offer a general overview of DM, Learning Analytics (LA), and data collection models in the context of educational research, while also defining and discussing data mining’s four guiding principles— prediction, clustering, rule association, and outlier detection. The next series of chapters showcase the pedagogical applications of Educational Data Mining (EDM) and feature case studies drawn from Business, Humanities, Health Sciences, Linguistics, and Physical Sciences education that serve to highlight the successes and some of the limitations of data mining research applications in educational settings. The remaining chapters focus exclusively on EDM’s emerging role in helping to advance educational research—from identifying at-risk students and closing socioeconomic gaps in achievement to aiding in teacher evaluation and facilitating peer conferencing. This book features contributions from international experts in a variety of fields. Includes case studies where data mining techniques have been effectively applied to advance teaching and learning Addresses applications of data mining in educational research, including: social networking and education; policy and legislation in the classroom; and identification of at-risk students Explores Massive Open Online Courses (MOOCs) to study the effectiveness of online networks in promoting learning and understanding the communication patterns among users and students Features supplementary resources including a primer on foundational aspects of educational mining and learning analytics Data Mining and Learning Analytics: Applications in Educational Research is written for both scientists in EDM and educators interested in using and integrating DM and LA to improve education and advance educational research.

Data Mining and Predictive Analytics

Author: Daniel T. Larose
Publisher: John Wiley & Sons
ISBN: 9781118868706
Release Date: 2015-03-16
Genre: Computers

Learn methods of data analysis and their application to real-world data sets This updated second edition serves as an introduction to data mining methods and models, including association rules, clustering, neural networks, logistic regression, and multivariate analysis. The authors apply a unified “white box” approach to data mining methods and models. This approach is designed to walk readers through the operations and nuances of the various methods, using small data sets, so readers can gain an insight into the inner workings of the method under review. Chapters provide readers with hands-on analysis problems, representing an opportunity for readers to apply their newly-acquired data mining expertise to solving real problems using large, real-world data sets. Data Mining and Predictive Analytics: Offers comprehensive coverage of association rules, clustering, neural networks, logistic regression, multivariate analysis, and R statistical programming language Features over 750 chapter exercises, allowing readers to assess their understanding of the new material Provides a detailed case study that brings together the lessons learned in the book Includes access to the companion website, www.dataminingconsultant, with exclusive password-protected instructor content Data Mining and Predictive Analytics will appeal to computer science and statistic students, as well as students in MBA programs, and chief executives.

Automated Data Collection with R

Author: Simon Munzert
Publisher: John Wiley & Sons
ISBN: 9781118834800
Release Date: 2014-12-18
Genre: Computers

A hands on guide to web scraping and text mining for bothbeginners and experienced users of R Introduces fundamental concepts of the main architecture of theweb and databases and covers HTTP, HTML, XML, JSON, SQL. Provides basic techniques to query web documents and data sets(XPath and regular expressions). An extensive set of exercises are presented to guide thereader through each technique. Explores both supervised and unsupervised techniques as well asadvanced techniques such as data scraping and text management. Case studies are featured throughout along with examples foreach technique presented. R code and solutions to exercises featured in thebook are provided on a supporting website.

Formale Sprachen

Author: Arto K. Salomaa
Publisher: Springer-Verlag
ISBN: 9783642670817
Release Date: 2013-03-12
Genre: Computers


Data mining

Author: Ian H. Witten
Publisher:
ISBN: 3446215336
Release Date: 2001
Genre:


R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

Big Data in der Praxis

Author: Jonas Freiknecht
Publisher: Carl Hanser Verlag GmbH Co KG
ISBN: 9783446441774
Release Date: 2014-10-01
Genre: Computers

BIG DATA IN DER PRAXIS // - Für Analysten, BI-Verantwortliche, Data-Scientists, Consultants - Auf der DVD finden Sie: 18 fertige Projekte, die im Buch Schritt für Schritt entwickelt werden; Videotutorials u.a. zur Installation von Hadoop, Hive, HBase (Gesamtdauer: 80 Min.); Testdatensätze für die Wissensdatenbank Dieses Buch bringt Ihnen das Thema Big Data auf sehr praktische Art und Weise nahe. Sie lernen Technologien, Tools und Methoden kennen, entwickeln Beispiel-Lösungen und bekommen aufgezeigt, wie Sie bestehende Systeme vorausschauend auf die mit dem Big Data-Trend einhergehenden Herausforderungen vorbereiten. Dazu werden Sie neben den bekannten Apache-Projekten wie Hadoop, Hive und HBase auch einige weniger bekannte Frameworks wie Apache UIMA oder Apache OpenNLP kennenlernen, um gezielt die Verarbeitung unstrukturierter Daten zu behandeln. Alle hier verwendeten Software-Komponenten stehen im vollen Umfang kostenlos im Internet zur Verfügung. Gemeinsam mit dem Autor werden Sie ganz konkret Schritt für Schritt viele kleinere Projekte aufbauen bis hin zu einer fertigen und funktionstüchtigen Implementierung. Ziel des Buches ist es, Sie auf den Effekt und den Mehrwert der neuen Möglichkeiten aufmerksam zu machen, sodass Sie diese konstruktiv in Ihr Unternehmen tragen können und für sich und Ihre Kollegen somit ein Bewusstsein für den Wert Ihrer Daten schaffen. AUS DEM INHALT // Einführung rund um Big Data // Hadoop installieren, konfigurieren & bedienen // HDFS, Map-Reduce & YARN: Daten speichern und verarbeiten // Hadoop-Ecosystem: Überblick über dessen Komponenten // Einführung in NoSQL // HBase installieren, einrichten & auf Daten zugreifen // Data-Warehousing mit Apache Hive // HiveQL als Abfragesprache, Hive Security, Hive & JDBC // Datenimport aus relationalen Datenbanken mit Sqoop // Big Data-Visualisierung: Diagrammarten, Tipps & Trends // Visualisierungs-Frameworks im Vergleich // D3.js: Entwicklung einiger Beispieldiagramme // Entwicklung einer abschließenden Big Data-Analyse-Lösung // Troubleshooting für die Arbeit mit Hadoop, Hive & HBase

Hau rein

Author: Gary Vaynerchuk
Publisher: books4success
ISBN: 9783941493612
Release Date: 2010-09-20
Genre: Self-Help

Haben Sie ein Hobby, mit dem Sie sich den ganzen Tag beschäftigen könnten? Eine Leidenschaft, die Sie nachts wach hält? Jetzt ist der perfekte Zeitpunkt, um mit dieser Leidenschaft Geld zu verdienen. In "Hau rein!" zeigt Ihnen Gary Vaynerchuk, wie Sie das Internet nutzen können, um aus Ihren Träumen ein lukratives Geschäftsmodell zu machen. Gary hatte Jahre damit zugebracht, auf die klassische Werbetour aus seinem Familienbetrieb einen nationalen Marktführer zu machen. Dann kam der Tag, der sein Leben veränderte. Er nahm eine Videokamera und machte sich mittels Social Networking ohne großen finanziellen Aufwand selbst zur erfolgreichen Marke. Am Ende dieses Buchs werden Sie Schritt für Schritt gelernt haben, wie Sie soziale Netzwerke nutzen können, um Ihre Träume als Unternehmer wahr werden zu lassen. "Hau rein!" ist das ultimative aktuelle Handbuch für Geschäftsleute und solche, die es werden wollen.

Data Science f r Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 9783527806751
Release Date: 2016-04-22
Genre: Mathematics

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Visualize This

Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 9783527760220
Release Date: 2012-12-01
Genre: Statistics / Graphic methods / Data processing

A guide on how to visualise and tell stories with data, providing practical design tips complemented with step-by-step tutorials.