Author: Marcus Du Sautoy

Publisher: C.H.Beck

ISBN: 340652320X

Release Date: 2004

Genre: Primzahl

Skip to content
## Die Musik der Primzahlen

## Prime Numbers and the Riemann Hypothesis

This book introduces prime numbers and explains the famous unsolved Riemann hypothesis.
## Prime Numbers and the Riemann Hypothesis By Barry Mazur and William Stein Cambridge University Press 2016 Pp Xi 142 Price GBP 17 99 paperback ISBN 9781107499430

## Poincar s Vermutung

## Stalking The Riemann Hypothesis

Like a hunter who sees 'a bit of blood' on the trail, that's how Princeton mathematician Peter Sarnak describes the feeling of chasing an idea that seems to have a chance of success. If this is so, then the jungle of abstractions that is mathematics is full of frenzied hunters these days. They are out stalking big game: the resolution of 'The Riemann Hypothesis', seems to be in their sights. The Riemann Hypothesis is about the prime numbers, the fundamental numerical elements. Stated in 1859 by Professor Bernhard Riemann, it proposes a simple law which Riemann believed a 'very likely' explanation for the way in which the primes are distributed among the whole numbers, indivisible stars scattered without end throughout a boundless numerical universe. Just eight years later, at the tender age of thirty-nine Riemann would be dead from tuberculosis, cheated of the opportunity to settle his conjecture. For over a century, the Riemann Hypothesis has stumped the greatest of mathematical minds, but these days frustration has begun to give way to excitement. This unassuming comment is revealing astounding connections among nuclear physics, chaos and number theory, creating a frenzy of intellectual excitement amplified by the recent promise of a one million dollar bounty. The story of the quest to settle the Riemann Hypothesis is one of scientific exploration. It is peopled with solitary hermits and gregarious cheerleaders, cool calculators and wild-eyed visionaries, Nobel Prize-winners and Fields Medalists. To delve into the Riemann Hypothesis is to gain a window into the world of modern mathematics and the nature of mathematics research. Stalking the Riemann Hypothesis will open wide this window so that all may gaze through it in amazement.
## THE SYMPHONY OF PRIMES DISTRIBUTION OF PRIMES AND RIEMANN S HYPOTHESIS

This book presents research results concerning the distribution of prime numbers. The first major result discussed is the supremum for the maximal prime gaps. By an implementation of a binomial coefficient the maximal prime gaps supremum bound is proved, simultaneously establishing the infimum for primes in the short interval. Subsequently, a novel application of the theory of the primorial function establishes the tailored logarithmic integral, which is a superior adaptation of the classical Gauss' logarithmic integral. The tailored integral due to its radically improved accuracy over the Gauss' logarithmic integral, constitutes the supremum bound of estimation of the prime counting function. It presents the possibility to estimate the prime counting function with unprecedented accuracy.
## The Riemann Hypothesis

The Riemann Hypothesis has become the Holy Grail of mathematics in the century and a half since 1859 when Bernhard Riemann, one of the extraordinary mathematical talents of the 19th century, originally posed the problem. While the problem is notoriously difficult, and complicated even to state carefully, it can be loosely formulated as "the number of integers with an even number of prime factors is the same as the number of integers with an odd number of prime factors." The Hypothesis makes a very precise connection between two seemingly unrelated mathematical objects, namely prime numbers and the zeros of analytic functions. If solved, it would give us profound insight into number theory and, in particular, the nature of prime numbers. This book is an introduction to the theory surrounding the Riemann Hypothesis. Part I serves as a compendium of known results and as a primer for the material presented in the 20 original papers contained in Part II. The original papers place the material into historical context and illustrate the motivations for research on and around the Riemann Hypothesis. Several of these papers focus on computation of the zeta function, while others give proofs of the Prime Number Theorem, since the Prime Number Theorem is so closely connected to the Riemann Hypothesis. The text is suitable for a graduate course or seminar or simply as a reference for anyone interested in this extraordinary conjecture.
## The Prime Number Theorem

The prime numbers appear to be distributed in a very irregular way amongst the integers, but the prime number theorem provides a simple formula that tells us (in an approximate but well-defined sense) how many primes we can expect to find that are less than any integer we might choose. This is indisputably one of the the great classical theorems of mathematics. Suitable for advanced undergraduates and beginning graduates, this textbook demonstrates how the tools of analysis can be used in number theory to attack a famous problem.
## Jost Function Prime Numbers and Riemann Zeta Function

## Vorlesungen ber Riemannsche Fl chen

## An Introduction to the Theory of the Riemann Zeta Function

This is a modern introduction to the analytic techniques used in the investigation of zeta-function. Riemann introduced this function in connection with his study of prime numbers, and from this has developed the subject of analytic number theory. Since then, many other classes of "zeta-function" have been introduced and they are now some of the most intensively studied objects in number theory. Professor Patterson has emphasized central ideas of broad application, avoiding technical results and the customary function-theoretic approach.
## Riemann s Zeta Function

Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.
## The Riemann Hypothesis and Prime Number Theorem

## Prime Obsession

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.
## Prime Numbers

Bridges the gap between theoretical and computational aspects of prime numbers Exercise sections are a goldmine of interesting examples, pointers to the literature and potential research projects Authors are well-known and highly-regarded in the field