For 150 years the Riemann hypothesis has been the holy grail of mathematics. Now, at a moment when mathematicians are finally moving in on a proof, Dartmouth professor Dan Rockmore tells the riveting history of the hunt for a solution.In 1859 German professor Bernhard Riemann postulated a law capable of describing with an amazing degree of accuracy the occurrence of the prime numbers. Rockmore takes us all the way from Euclid to the mysteries of quantum chaos to show how the Riemann hypothesis lies at the very heart of some of the most cutting-edge research going on today in physics and mathematics. From the Trade Paperback edition.

Author: John Derbyshire
Publisher: Joseph Henry Press
ISBN: 9780309141253
Release Date: 2003-04-15
Genre: Science

In August 1859 Bernhard Riemann, a little-known 32-year old mathematician, presented a paper to the Berlin Academy titled: "On the Number of Prime Numbers Less Than a Given Quantity." In the middle of that paper, Riemann made an incidental remark â€" a guess, a hypothesis. What he tossed out to the assembled mathematicians that day has proven to be almost cruelly compelling to countless scholars in the ensuing years. Today, after 150 years of careful research and exhaustive study, the question remains. Is the hypothesis true or false? Riemann's basic inquiry, the primary topic of his paper, concerned a straightforward but nevertheless important matter of arithmetic â€" defining a precise formula to track and identify the occurrence of prime numbers. But it is that incidental remark â€" the Riemann Hypothesis â€" that is the truly astonishing legacy of his 1859 paper. Because Riemann was able to see beyond the pattern of the primes to discern traces of something mysterious and mathematically elegant shrouded in the shadows â€" subtle variations in the distribution of those prime numbers. Brilliant for its clarity, astounding for its potential consequences, the Hypothesis took on enormous importance in mathematics. Indeed, the successful solution to this puzzle would herald a revolution in prime number theory. Proving or disproving it became the greatest challenge of the age. It has become clear that the Riemann Hypothesis, whose resolution seems to hang tantalizingly just beyond our grasp, holds the key to a variety of scientific and mathematical investigations. The making and breaking of modern codes, which depend on the properties of the prime numbers, have roots in the Hypothesis. In a series of extraordinary developments during the 1970s, it emerged that even the physics of the atomic nucleus is connected in ways not yet fully understood to this strange conundrum. Hunting down the solution to the Riemann Hypothesis has become an obsession for many â€" the veritable "great white whale" of mathematical research. Yet despite determined efforts by generations of mathematicians, the Riemann Hypothesis defies resolution. Alternating passages of extraordinarily lucid mathematical exposition with chapters of elegantly composed biography and history, Prime Obsession is a fascinating and fluent account of an epic mathematical mystery that continues to challenge and excite the world. Posited a century and a half ago, the Riemann Hypothesis is an intellectual feast for the cognoscenti and the curious alike. Not just a story of numbers and calculations, Prime Obsession is the engrossing tale of a relentless hunt for an elusive proof â€" and those who have been consumed by it.

Author: Peter Borwein
Publisher: Springer Science & Business Media
ISBN: 9780387721255
Release Date: 2008
Genre: Mathematics

This book presents the Riemann Hypothesis, connected problems, and a taste of the body of theory developed towards its solution. It is targeted at the educated non-expert. Almost all the material is accessible to any senior mathematics student, and much is accessible to anyone with some university mathematics. The appendices include a selection of original papers. This collection is not very large and encompasses only the most important milestones in the evolution of theory connected to the Riemann Hypothesis. The appendices also include some authoritative expository papers. These are the "expert witnesses” whose insight into this field is both invaluable and irreplaceable.

Author: Roland van der Veen
Publisher: The Mathematical Association of America
ISBN: 9780883856505
Release Date: 2016-01-06
Genre: Mathematics

This book introduces interested readers to one of the most famous and difficult open problems in mathematics: the Riemann Hypothesis. Finding a proof will not only make you famous, but also earns you a one million dollar prize. The book originated from an online internet course at the University of Amsterdam for mathematically talented secondary school students. Its aim was to bring them into contact with challenging university level mathematics and show them why the Riemann Hypothesis is such an important problem in mathematics. After taking this course, many participants decided to study in mathematics at university.

This book presents research results concerning the distribution of prime numbers. The first major result discussed is the supremum for the maximal prime gaps. By an implementation of a binomial coefficient the maximal prime gaps supremum bound is proved, simultaneously establishing the infimum for primes in the short interval. Subsequently, a novel application of the theory of the primorial function establishes the tailored logarithmic integral, which is a superior adaptation of the classical Gauss' logarithmic integral. The tailored integral due to its radically improved accuracy over the Gauss' logarithmic integral, constitutes the supremum bound of estimation of the prime counting function. It presents the possibility to estimate the prime counting function with unprecedented accuracy.

Author: Harold M. Edwards
Publisher: Courier Corporation
ISBN: 0486417409
Release Date: 2001
Genre: Mathematics

Superb high-level study of one of the most influential classics in mathematics examines landmark 1859 publication entitled “On the Number of Primes Less Than a Given Magnitude,” and traces developments in theory inspired by it. Topics include Riemann's main formula, the prime number theorem, the Riemann-Siegel formula, large-scale computations, Fourier analysis, and other related topics. English translation of Riemann's original document appears in the Appendix.

An accessible meditation on the ultimate meaning of mathematics draws on the famous eight-page Riemann Hypothesis publication and the ongoing contest to prove his answer true and support his idea about the distribution of prime numbers.

Author: Albert Edward Ingham
Publisher: Cambridge University Press
ISBN: 0521397898
Release Date: 1932
Genre: Mathematics

Originally published in 1934, this volume presents the theory of the distribution of the prime numbers in the series of natural numbers. Despite being long out of print, it remains unsurpassed as an introduction to the field.

This 2003 undergraduate introduction to analytic number theory develops analytic skills in the course of studying ancient questions on polygonal numbers, perfect numbers and amicable pairs. The question of how the primes are distributed amongst all the integers is central in analytic number theory. This distribution is determined by the Riemann zeta function, and Riemann's work shows how it is connected to the zeroes of his function, and the significance of the Riemann Hypothesis. Starting from a traditional calculus course and assuming no complex analysis, the author develops the basic ideas of elementary number theory. The text is supplemented by series of exercises to further develop the concepts, and includes brief sketches of more advanced ideas, to present contemporary research problems at a level suitable for undergraduates. In addition to proofs, both rigorous and heuristic, the book includes extensive graphics and tables to make analytic concepts as concrete as possible.

One notable new direction this century in the study of primes has been the influx of ideas from probability. The goal of this book is to provide insights into the prime numbers and to describe how a sequence so tautly determined can incorporate such a striking amount of randomness. The book opens with some classic topics of number theory. It ends with a discussion of some of the outstanding conjectures in number theory. In between are an excellent chapter on the stochastic properties of primes and a walk through an elementary proof of the Prime Number Theorem. This book is suitable for anyone who has had a little number theory and some advanced calculus involving estimates. Its engaging style and invigorating point of view will make refreshing reading for advanced undergraduates through research mathematicians.

Author: G. J. O. Jameson
Publisher: Cambridge University Press
ISBN: 0521891108
Release Date: 2003-04-17
Genre: Mathematics

The prime numbers appear to be distributed in a very irregular way amongst the integers, but the prime number theorem provides a simple formula that tells us (in an approximate but well-defined sense) how many primes we can expect to find that are less than any integer we might choose. This is indisputably one of the the great classical theorems of mathematics. Suitable for advanced undergraduates and beginning graduates, this textbook demonstrates how the tools of analysis can be used in number theory to attack a famous problem.

Author: Samuel W. Gilbert
Publisher: Riemann hypothesis
ISBN: 143921638X
Release Date: 2009-01-01
Genre: Mathematics

The author demonstrates that the Dirichlet series representation of the Riemann zeta function converges geometrically at the roots in the critical strip. The Dirichlet series parts of the Riemann zeta function diverge everywhere in the critical strip. It has therefore been assumed for at least 150 years that the Dirichlet series representation of the zeta function is useless for characterization of the non-trivial roots. The author shows that this assumption is completely wrong. Reduced, or simplified, asymptotic expansions for the terms of the zeta function series parts are equated algebraically with reduced asymptotic expansions for the terms of the zeta function series parts with reflected argument, constraining the real parts of the roots of both functions to the critical line. Hence, the Riemann hypothesis is correct. Formulae are derived and solved numerically, yielding highly accurate values of the imaginary parts of the roots of the zeta function.

Author: David Wells
Publisher: John Wiley & Sons
ISBN: 1118045718
Release Date: 2011-01-13
Genre: Mathematics

A fascinating journey into the mind-bending world of prime numbers Cicadas of the genus Magicicada appear once every 7, 13, or 17 years. Is it just a coincidence that these are all prime numbers? How do twin primes differ from cousin primes, and what on earth (or in the mind of a mathematician) could be sexy about prime numbers? What did Albert Wilansky find so fascinating about his brother-in-law's phone number? Mathematicians have been asking questions about prime numbers for more than twenty-five centuries, and every answer seems to generate a new rash of questions. In Prime Numbers: The Most Mysterious Figures in Math, you'll meet the world's most gifted mathematicians, from Pythagoras and Euclid to Fermat, Gauss, and Erd?o?s, and you'll discover a host of unique insights and inventive conjectures that have both enlarged our understanding and deepened the mystique of prime numbers. This comprehensive, A-to-Z guide covers everything you ever wanted to know--and much more that you never suspected--about prime numbers, including: * The unproven Riemann hypothesis and the power of the zeta function * The "Primes is in P" algorithm * The sieve of Eratosthenes of Cyrene * Fermat and Fibonacci numbers * The Great Internet Mersenne Prime Search * And much, much more

Author: Karl Sabbagh
Publisher: Farrar, Straus and Giroux
ISBN: 0374529353
Release Date: 2004-05-26
Genre: Mathematics

Since 1859, when the shy German mathematician Bernhard Riemann wrote an eight-page article giving a possible answer to a problem that had tormented mathematical minds for centuries, the world's greatest mathematicians have been fascinated, infuriated, and obsessed with proving the Riemann hypothesis. They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995. In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities. Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.