Principles of Computational Fluid Dynamics

Author: Pieter Wesseling
Publisher: Springer Science & Business Media
ISBN: 9783642051456
Release Date: 2009-12-21
Genre: Mathematics

This up-to-date book gives an account of the present state of the art of numerical methods employed in computational fluid dynamics. The underlying numerical principles are treated in some detail, using elementary methods. The author gives many pointers to the current literature, facilitating further study. This book will become the standard reference for CFD for the next 20 years.

Fundamentals of Computational Fluid Dynamics

Author: H. Lomax
Publisher: Springer Science & Business Media
ISBN: 9783662046548
Release Date: 2013-03-09
Genre: Science

The chosen semi-discrete approach of a reduction procedure of partial differential equations to ordinary differential equations and finally to difference equations gives the book its distinctiveness and provides a sound basis for a deep understanding of the fundamental concepts in computational fluid dynamics.

Characteristics Finite Element Methods in Computational Fluid Dynamics

Author: Joe Iannelli
Publisher: Springer Science & Business Media
ISBN: 9783540453437
Release Date: 2006-09-24
Genre: Science

This book details a systematic characteristics-based finite element procedure to investigate incompressible, free-surface and compressible flows. Several sections derive the Fluid Dynamics equations from first thermo-mechanics principles and develop this multi-dimensional and infinite-directional upstream procedure by combining a finite element discretization with an implicit non-linearly stable Runge-Kutta time integration for the numerical solution of the Euler and Navier Stokes equations.

Efficient Solvers for Incompressible Flow Problems

Author: Stefan Turek
Publisher: Springer Science & Business Media
ISBN: 9783642583933
Release Date: 2012-12-06
Genre: Mathematics

A discussion of recent numerical and algorithmic tools for the solution of certain flow problems arising in CFD, which are governed by the incompressible Navier-Stokes equations. The book contains the latest results for the numerical solution of (complex) flow problems on modern computer platforms, with particular emphasis on the solution process of the resulting high dimensional discrete systems of equations which is often neglected in other works. Together with the accompanying CD ROM containing the complete FEATFLOW 1.1 software and parts of the "Virtual Album of Fluid Motion", readers are able to perform their own numerical simulations and will find numerous suggestions for improving their own computational simulations.

Computational Methods for Fluid Dynamics

Author: Joel H. Ferziger
Publisher: Springer Science & Business Media
ISBN: 9783642976513
Release Date: 2012-12-06
Genre: Technology & Engineering

A detailed description of the methods most often used in practice. The authors are experts in their fields and cover such advanced techniques as direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, and free surface flows. The book shows common roots and basic principles for many apparently different methods, while also containing a great deal of practical advice for code developers and users. All the computer codes can be accessed from the Springer server on the internet. Designed to be equally useful for beginners and experts.

Introduction to Theoretical and Computational Fluid Dynamics

Author: Constantine Pozrikidis
Publisher: Oxford University Press
ISBN: 9780199752072
Release Date: 2011-11-17
Genre: Computers

This book discusses the fundamental principles and equations governing the motion of incompressible Newtonian fluids, and simultaneously introduces analytical and numerical methods for solving a broad range of pertinent problems. Topics include an in-depth discussion of kinematics, elements of differential geometry of lines and surfaces, vortex dynamics, properties and computation of interfacial shapes in hydrostatics, exact solutions, flow at low Reynolds numbers, interfacial flows, hydrodynamic stability, boundary-layer analysis, vortex motion, boundary-integral methods for potential and Stokes flow, principles of computational fluid dynamics (CFD), and finite-difference methods for Navier-Stokes flow. The discourse includes classical and original topics, as well as derivations accompanied by solved and unsolved problems that illustrate the theoretical results and explain the implementation of the numerical methods. Appendices provide a wealth of information and establish the necessary mathematical and numerical framework. A unique and comprehensive synthesis of the essential aspects of the discipline, this volume serves as an ideal textbook in several graduate courses on theoretical and computational fluid dynamics, applied mathematics, and scientific computing. The material is an indispensable resource for professionals and researchers in various fields of science, chemical, mechanical, biomechanical, civil and aerospace engineering.

Parallel Processing and Applied Mathematics

Author: Roman Wyrzykowski
Publisher: Springer
ISBN: 9783642551956
Release Date: 2014-05-07
Genre: Computers

This two-volume-set (LNCS 8384 and 8385) constitutes the refereed proceedings of the 10th International Conference of Parallel Processing and Applied Mathematics, PPAM 2013, held in Warsaw, Poland, in September 2013. The 143 revised full papers presented in both volumes were carefully reviewed and selected from numerous submissions. The papers cover important fields of parallel/distributed/cloud computing and applied mathematics, such as numerical algorithms and parallel scientific computing; parallel non-numerical algorithms; tools and environments for parallel/distributed/cloud computing; applications of parallel computing; applied mathematics, evolutionary computing and metaheuristics.

Computational Fluid Dynamics for Engineers

Author: Tuncer Cebeci
Publisher: Springer
ISBN: 354080725X
Release Date: 2009-09-02
Genre: Technology & Engineering

History reminds us of ancient examples of fluid dynamics applications such as the Roman baths and aqueducts that fulfilled the requirements of the engineers who built them; of ships of various types with adequate hull designs, and of wind energy systems, built long before the subject of fluid mechanics was formalized by Reynolds, Newton, Euler, Navier, Stokes, Prandtl and others. The twentieth century has witnessed many more examples of applications of fluid dynamics for the use of humanity, all designed without the use of electronic computers. They include prime movers such as internal-combustion engines, gas and steam turbines, flight vehicles, and environmental systems for pollution control and ventilation. Computational Fluid Dynamics (CFD) deals with the numerical analysis of these phenomena. Despite impressive progress in recent years, CFD remains an imperfect tool in the comparatively mature discipline of fluid dynamics, partly because electronic digital computers have been in widespread use for less than thirty years. The Navier-Stokes equations, which govern the motion of a Newtonian viscous fluid were formulated well over a century ago. The most straightforward method of attacking any fluid dynamics problem is to solve these equations for the appropriate boundary conditions. Analytical solutions are few and trivial and, even with today's supercomputers, numerically exact solution of the complete equations for the three-dimensional, time-dependent motion of turbulent flow is prohibitively expensive except for basic research studies in sim ple configurations at low Reynolds numbers. Therefore, the "straightforward" approach is still impracticable for engineering purposes.

Computational Fluid Dynamics for Sport Simulation

Author: Martin Peters
Publisher: Springer Science & Business Media
ISBN: 9783642044663
Release Date: 2009-11-26
Genre: Computers

All over the world sport plays a prominent role in society: as a leisure activity for many, as an ingredient of culture, as a business and as a matter of national prestige in such major events as the World Cup in soccer or the Olympic Games. Hence, it is not surprising that science has entered the realm of sports, and, in particular, that computer simulation has become highly relevant in recent years. This is explored in this book by choosing five different sports as examples, demonstrating that computational science and engineering (CSE) can make essential contributions to research on sports topics on both the fundamental level and, eventually, by supporting athletes’ performance.

Fluid Dynamics

Author: C. Pozrikidis
Publisher: Springer
ISBN: 9781489979919
Release Date: 2016-08-23
Genre: Technology & Engineering

This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This book is a must for students in all fields of engineering, computational physics, scientific computing, and applied mathematics. It can be used in both undergraduate and graduate courses in fluid mechanics, aerodynamics, and computational fluid dynamics. The audience includes not only advanced undergraduate and entry-level graduate students, but also a broad class of scientists and engineers with a general interest in scientific computing.

The Finite Volume Method in Computational Fluid Dynamics

Author: F. Moukalled
Publisher: Springer
ISBN: 9783319168746
Release Date: 2015-08-13
Genre: Technology & Engineering

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

The Least Squares Finite Element Method

Author: Bo-nan Jiang
Publisher: Springer Science & Business Media
ISBN: 9783662037409
Release Date: 2013-03-14
Genre: Science

This is the first monograph on the subject, providing a comprehensive introduction to the LSFEM method for numerical solution of PDEs. LSFEM is simple, efficient and robust, and can solve a wide range of problems in fluid dynamics and electromagnetics.

Computational Gasdynamics

Author: Culbert B. Laney
Publisher: Cambridge University Press
ISBN: 9781107393608
Release Date: 1998-06-13
Genre: Technology & Engineering

Numerical methods are indispensable tools in the analysis of complex fluid flows. This book focuses on computational techniques for high-speed gas flows, especially gas flows containing shocks and other steep gradients. The book decomposes complicated numerical methods into simple modular parts, showing how each part fits and how each method relates to or differs from others. The text begins with a review of gasdynamics and computational techniques. Next come basic principles of computational gasdynamics. The last two parts cover basic techniques and advanced techniques. Senior and graduate level students, especially in aerospace engineering, as well as researchers and practising engineers, will find a wealth of invaluable information on high-speed gas flows in this text.

Computational Fluid Dynamics for Engineers and Scientists

Author: Sreenivas Jayanti
Publisher: Springer
ISBN: 9789402412178
Release Date: 2018-01-09
Genre: Technology & Engineering

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.