Principles of Optics

Author: Max Born
Publisher: Elsevier
ISBN: 9781483103204
Release Date: 2013-06-01
Genre: Science

Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Sixth Edition covers optical phenomenon that can be treated with Maxwell’s phenomenological theory. The book is comprised of 14 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves. The selection will be most useful to researchers whose work involves understanding the behavior of light.

Principles of Optics

Author: Max Born
Publisher: Cambridge University Press
ISBN: 9781139643405
Release Date: 1999-10-13
Genre: Science

Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

Principles of Optics

Author: Max Born
Publisher: Cambridge University Press
ISBN: 0521642221
Release Date: 1999-10-13
Genre: Science

Principles of Optics is one of the classic science books of the twentieth century, and probably the most influential book in optics published in the past 40 years. The new edition is the first ever thoroughly revised and expanded edition of this standard text. Among the new material, much of which is not available in any other optics text, is a section on the CAT scan (computerized axial tomography), which has revolutionized medical diagnostics. The book also includes a new chapter on scattering from inhomogeneous media which provides a comprehensive treatment of the theory of scattering of scalar as well as of electromagnetic waves, including the Born series and the Rytov series. The chapter also presents an account of the principles of diffraction tomography - a refinement of the CAT scan - to which Emil Wolf, one of the authors, has made a basic contribution by formulating in 1969 what is generally regarded to be the basic theorem in this field. The chapter also includes an account of scattering from periodic potentials and its connection to the classic subject of determining the structure of crystals from X-ray diffraction experiments, including accounts of von Laue equations, Bragg's law, the Ewald sphere of reflection and the Ewald limiting sphere, both generalized to continuous media. These topics, although originally introduced in connection with the theory of X-ray diffraction by crystals, have since become of considerable relevance to optics, for example in connection with deep holograms. Other new topics covered in this new edition include interference with broad-band light, which introduces the reader to an important phenomenon discovered relatively recently by Emil Wolf, namely the generation of shifts of spectral lines and other modifications of spectra of radiated fields due to the state of coherence of a source. There is also a section on the so-called Rayleigh-Sommerfield diffraction theory which, in recent times, has been finding increasing popularity among optical scientists. There are also several new appendices, including one on energy conservation in scalar wavefields, which is seldom discussed in books on optics. The new edition of this standard reference will continue to be invaluable to advanced undergraduates, graduate students and researchers working in most areas of optics.

Introduction to Fourier Optics

Author: Joseph W. Goodman
Publisher: Roberts and Company Publishers
ISBN: 0974707724
Release Date: 2005-01-01
Genre: Family & Relationships

Fourier analysis is a ubiquitous tool that has found application to diverse areas of physics and engineering. This book deals with its applications in optics, and in particular with applications to diffraction, imaging, optical data processing and holography. This book can be used as an upper level textbook to satisfy the needs of several different types of courses.

Optical Coherence and Quantum Optics

Author: Leonard Mandel
Publisher: Cambridge University Press
ISBN: 0521417112
Release Date: 1995-09-29
Genre: Science

This book presents a systematic account of optical coherence theory within the framework of classical optics, as applied to such topics as radiation from sources of different states of coherence, foundations of radiometry, effects of source coherence on the spectra of radiated fields, coherence theory of laser modes, and scattering of partially coherent light by random media.

Electromagnetic Wave Propagation Radiation and Scattering

Author: Akira Ishimaru
Publisher: John Wiley & Sons
ISBN: 9781119079538
Release Date: 2017-08-09
Genre: Science

One of the most methodical treatments of electromagnetic wave propagation, radiation, and scattering—including new applications and ideas Presented in two parts, this book takes an analytical approach on the subject and emphasizes new ideas and applications used today. Part one covers fundamentals of electromagnetic wave propagation, radiation, and scattering. It provides ample end-of-chapter problems and offers a 90-page solution manual to help readers check and comprehend their work. The second part of the book explores up-to-date applications of electromagnetic waves—including radiometry, geophysical remote sensing and imaging, and biomedical and signal processing applications. Written by a world renowned authority in the field of electromagnetic research, this new edition of Electromagnetic Wave Propagation, Radiation, and Scattering: From Fundamentals to Applications presents detailed applications with useful appendices, including mathematical formulas, Airy function, Abel’s equation, Hilbert transform, and Riemann surfaces. The book also features newly revised material that focuses on the following topics: Statistical wave theories—which have been extensively applied to topics such as geophysical remote sensing, bio-electromagnetics, bio-optics, and bio-ultrasound imaging Integration of several distinct yet related disciplines, such as statistical wave theories, communications, signal processing, and time reversal imaging New phenomena of multiple scattering, such as coherent scattering and memory effects Multiphysics applications that combine theories for different physical phenomena, such as seismic coda waves, stochastic wave theory, heat diffusion, and temperature rise in biological and other media Metamaterials and solitons in optical fibers, nonlinear phenomena, and porous media Primarily a textbook for graduate courses in electrical engineering, Electromagnetic Wave Propagation, Radiation, and Scattering is also ideal for graduate students in bioengineering, geophysics, ocean engineering, and geophysical remote sensing. The book is also a useful reference for engineers and scientists working in fields such as geophysical remote sensing, bio–medical engineering in optics and ultrasound, and new materials and integration with signal processing.

Principles of Nano Optics

Author: Lukas Novotny
Publisher: Cambridge University Press
ISBN: 9781107005464
Release Date: 2012-09-06
Genre: Science

Fully revised and in its second edition, this standard reference on nano-optics is ideal for graduate students and researchers alike.

Introduction to Modern Optics

Author: Grant R. Fowles
Publisher: Courier Corporation
ISBN: 9780486134925
Release Date: 2012-04-25
Genre: Science

A complete basic undergraduate course in modern optics for students in physics, technology, and engineering. The first half deals with classical physical optics; the second, quantum nature of light. Solutions.

Introduction to Nanophotonics

Author: Sergey V. Gaponenko
Publisher: Cambridge University Press
ISBN: 9781139643566
Release Date: 2010-04-08
Genre: Science

Nanophotonics is where photonics merges with nanoscience and nanotechnology, and where spatial confinement considerably modifies light propagation and light-matter interaction. Describing the basic phenomena, principles, experimental advances and potential impact of nanophotonics, this graduate-level textbook is ideal for students in physics, optical and electronic engineering and materials science. The textbook highlights practical issues, material properties and device feasibility, and includes the basic optical properties of metals, semiconductors and dielectrics. Mathematics is kept to a minimum and theoretical issues are reduced to a conceptual level. Each chapter ends in problems so readers can monitor their understanding of the material presented. The introductory quantum theory of solids and size effects in semiconductors are considered to give a parallel discussion of wave optics and wave mechanics of nanostructures. The physical and historical interplay of wave optics and quantum mechanics is traced. Nanoplasmonics, an essential part of modern photonics, is also included.

Light Science

Author: Thomas Rossing
Publisher: Springer Science & Business Media
ISBN: 0387988270
Release Date: 1999-09-24
Genre: Science

Intended for students in the visual arts and for others with an interest in art, but with no prior knowledge of physics, this book presents the science behind what and how we see. The approach emphasises phenomena rather than mathematical theories and the joy of discovery rather than the drudgery of derivations. The text includes numerous problems, and suggestions for simple experiments, and also considers such questions as why the sky is blue, how mirrors and prisms affect the colour of light, how compact disks work, and what visual illusions can tell us about the nature of perception. It goes on to discuss such topics as the optics of the eye and camera, the different sources of light, photography and holography, colour in printing and painting, as well as computer imaging and processing.

The Light Fantastic

Author: I. R. Kenyon
Publisher: Oxford University Press, USA
ISBN: 9780198566458
Release Date: 2008
Genre: Science

This thorough and self-contained introduction to modern optics covers, in full, the three components: ray optics, wave optics and quantum optics. Examples of modern applications in the current century are used extensively.

Thin Film Optical Filters Fifth Edition

Author: H. Angus Macleod
Publisher: CRC Press
ISBN: 9781351982238
Release Date: 2017-12-15
Genre: Technology & Engineering

Praise for prior editions "an excellent treatise of thin film coatings, explaining how to produce all sorts of different filters selected according to the function they are required to play... an indispensable text for every filter manufacturer and user and an excellent guide for students." ?Contemporary Physics "essential reading for all those involved in the design, manufacture, and application of optical coatings" ?Materials World "a must-have addition to the library of any optical thin-film theorist or practitioner" ?SVC News This book is quite simply the Bible for the field of optical thin films. It gives the most complete introduction to thin film optical coatings addressed to manufacturers and users alike. This fifth edition offers a complete update on current design, manufacture, performance, and applications. New topics include absorbers and coherent perfect absorbers, photonic crystals, and metamaterials for optical coating. The author has also made substantial additions on scattering, composite materials, wire grid polarizers, laser damage, and applications. H. Angus Macleod is President of Thin Film Center Inc., in Tucson, Arizona, and Professor Emeritus of Optical Sciences Center at the University of Arizona. His professional honors include a Gold Medal from SPIE, the Esther Hoffman Beller Medal from the Optical Society of America, and the Nathaniel H. Sugerman Memorial Award from the Society of Vacuum Coaters.

Optics

Author: Miles V. Klein
Publisher: John Wiley & Sons Inc
ISBN: UOM:39076000499280
Release Date: 1986-04-22
Genre: Science

Introduces classical concepts of geometrical and physical optics with rigorous connections to fundamental theories of light--Fermat's principle, Huygen's principle, and Maxwell's equations. Establishes the conventional groundwork for optical understanding, including image formation, optical instruments, interference, diffraction, and polarization. Geared to advanced undergraduate and graduate students of physics as well as the professional scientist.