Projective Geometry

Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 0387406239
Release Date: 2003-10-09
Genre: Mathematics

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Introduction to Projective Geometry

Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 9780486141701
Release Date: 2011-09-12
Genre: Mathematics

This introductory volume offers strong reinforcement for its teachings, with detailed examples and numerous theorems, proofs, and exercises, plus complete answers to all odd-numbered end-of-chapter problems. 1970 edition.

Perspectives on Projective Geometry

Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Release Date: 2011-02-04
Genre: Mathematics

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Lectures in Projective Geometry

Author: A. Seidenberg
Publisher: Courier Corporation
ISBN: 9780486154732
Release Date: 2012-06-14
Genre: Mathematics

An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.

Projective Geometry

Author: T. Ewan Faulkner
Publisher: Courier Corporation
ISBN: 9780486154893
Release Date: 2013-02-20
Genre: Mathematics

Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Projective Geometry

Author: Albrecht Beutelspacher
Publisher: Cambridge University Press
ISBN: 0521483646
Release Date: 1998-01-29
Genre: Mathematics

A textbook on projective geometry that emphasises applications in modern information and communication science.

Projective Geometry

Author: Olive Whicher
ISBN: 9781855843790
Release Date: 2013-07-01
Genre: Mathematics

Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being.

Lectures on Analytic and Projective Geometry

Author: Dirk J. Struik
Publisher: Courier Corporation
ISBN: 9780486173528
Release Date: 2014-03-05
Genre: Mathematics

This undergraduate text develops the geometry of plane and space, leading up to conics and quadrics, within the context of metrical, affine, and projective transformations. 1953 edition.

Elements of Projective Geometry

Author: Luigi Cremona
ISBN: STANFORD:36105046445461
Release Date: 1893
Genre: Geometry, Projective

One of the best, most complete treatments of projective geometry, this treatise features detailed proofs, plus complete solutions for more than 150 examples and problems and numerous diagrams. 1913 edition.

Projective Geometry

Author: Rey Casse
Publisher: Oxford University Press
ISBN: 9780199298853
Release Date: 2006-08-03
Genre: Mathematics

This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinating a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.

Oriented Projective Geometry

Author: Jorge Stolfi
Publisher: Academic Press
ISBN: 9781483265193
Release Date: 2014-05-10
Genre: Mathematics

Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.

Projective Geometry and Projective Metrics

Author: Herbert Busemann
Publisher: Courier Corporation
ISBN: 9780486154695
Release Date: 2012-11-14
Genre: Mathematics

This text examines the 3 classical geometries and their relationship to general geometric structures, with particular focus on affine geometry, projective metrics, non-Euclidean geometry, and spatial geometry. 1953 edition.