Author: C. R. Wylie
Publisher: Courier Corporation
ISBN: 9780486141701
Release Date: 2011-09-12
Genre: Mathematics

This introductory volume offers strong reinforcement for its teachings, with detailed examples and numerous theorems, proofs, and exercises, plus complete answers to all odd-numbered end-of-chapter problems. 1970 edition.

Author: H.S.M. Coxeter
Publisher: Springer Science & Business Media
ISBN: 0387406239
Release Date: 2003-10-09
Genre: Mathematics

In Euclidean geometry, constructions are made with ruler and compass. Projective geometry is simpler: its constructions require only a ruler. In projective geometry one never measures anything, instead, one relates one set of points to another by a projectivity. The first two chapters of this book introduce the important concepts of the subject and provide the logical foundations. The third and fourth chapters introduce the famous theorems of Desargues and Pappus. Chapters 5 and 6 make use of projectivities on a line and plane, respectively. The next three chapters develop a self-contained account of von Staudt's approach to the theory of conics. The modern approach used in that development is exploited in Chapter 10, which deals with the simplest finite geometry that is rich enough to illustrate all the theorems nontrivially. The concluding chapters show the connections among projective, Euclidean, and analytic geometry.

Author: Jürgen Richter-Gebert
Publisher: Springer Science & Business Media
ISBN: 3642172865
Release Date: 2011-02-04
Genre: Mathematics

Projective geometry is one of the most fundamental and at the same time most beautiful branches of geometry. It can be considered the common foundation of many other geometric disciplines like Euclidean geometry, hyperbolic and elliptic geometry or even relativistic space-time geometry. This book offers a comprehensive introduction to this fascinating field and its applications. In particular, it explains how metric concepts may be best understood in projective terms. One of the major themes that appears throughout this book is the beauty of the interplay between geometry, algebra and combinatorics. This book can especially be used as a guide that explains how geometric objects and operations may be most elegantly expressed in algebraic terms, making it a valuable resource for mathematicians, as well as for computer scientists and physicists. The book is based on the author’s experience in implementing geometric software and includes hundreds of high-quality illustrations.

Whicher explores the concepts of polarity and movement in modern projective geometry as a discipline of thought that transcends the limited and rigid space and forms of Euclid, and the corresponding material forces conceived in classical mechanics. Rudolf Steiner underlined the importance of projective geometry as "a method of training the imaginative faculties of thinking, so that they become an instrument of cognition no less conscious and exact than mathematical reasoning." This seminal approach allows for precise scientific understanding of the concept of creative fields of formative (etheric) forces at work in nature--in plants, animals and in the human being.

An ideal text for undergraduate courses, this volume takes an axiomatic approach that covers relations between the basic theorems, conics, coordinate systems and linear transformations, quadric surfaces, and the Jordan canonical form. 1962 edition.

Highlighted by numerous examples, this book explores methods of the projective geometry of the plane. Examines the conic, the general equation of the 2nd degree, and the relationship between Euclidean and projective geometry. 1960 edition.

Bibliotheca Mathematica: A Series of Monographs on Pure and Applied Mathematics, Volume V: Axiomatic Projective Geometry, Second Edition focuses on the principles, operations, and theorems in axiomatic projective geometry, including set theory, incidence propositions, collineations, axioms, and coordinates. The publication first elaborates on the axiomatic method, notions from set theory and algebra, analytic projective geometry, and incidence propositions and coordinates in the plane. Discussions focus on ternary fields attached to a given projective plane, homogeneous coordinates, ternary field and axiom system, projectivities between lines, Desargues' proposition, and collineations. The book takes a look at incidence propositions and coordinates in space. Topics include coordinates of a point, equation of a plane, geometry over a given division ring, trivial axioms and propositions, sixteen points proposition, and homogeneous coordinates. The text examines the fundamental proposition of projective geometry and order, including cyclic order of the projective line, order and coordinates, geometry over an ordered ternary field, cyclically ordered sets, and fundamental proposition. The manuscript is a valuable source of data for mathematicians and researchers interested in axiomatic projective geometry.

Author: Rey Casse
Publisher: Oxford University Press
ISBN: 9780199298853
Release Date: 2006-08-03
Genre: Mathematics

This lucid and accessible text provides an introductory guide to projective geometry, an area of mathematics concerned with the properties and invariants of geometric figures under projection. Including numerous worked examples and exercises throughout, the book covers axiomatic geometry, field planes and PG(r, F), coordinating a projective plane, non-Desarguesian planes, conics and quadrics in PG(3, F). Assuming familiarity with linear algebra, elementary group theory, partial differentiation and finite fields, as well as some elementary coordinate geometry, this text is ideal for 3rd and 4th year mathematics undergraduates.

Author: M. K. Bennett
Publisher: John Wiley & Sons
ISBN: 9781118030820
Release Date: 2011-02-14
Genre: Mathematics

An important new perspective on AFFINE AND PROJECTIVE GEOMETRY This innovative book treats math majors and math education students to a fresh look at affine and projective geometry from algebraic, synthetic, and lattice theoretic points of view. Affine and Projective Geometry comes complete with ninety illustrations, and numerous examples and exercises, covering material for two semesters of upper-level undergraduate mathematics. The first part of the book deals with the correlation between synthetic geometry and linear algebra. In the second part, geometry is used to introduce lattice theory, and the book culminates with the fundamental theorem of projective geometry. While emphasizing affine geometry and its basis in Euclidean concepts, the book: * Builds an appreciation of the geometric nature of linear algebra * Expands students' understanding of abstract algebra with its nontraditional, geometry-driven approach * Demonstrates how one branch of mathematics can be used to prove theorems in another * Provides opportunities for further investigation of mathematics by various means, including historical references at the ends of chapters Throughout, the text explores geometry's correlation to algebra in ways that are meant to foster inquiry and develop mathematical insights whether or not one has a background in algebra. The insight offered is particularly important for prospective secondary teachers who must major in the subject they teach to fulfill the licensing requirements of many states. Affine and Projective Geometry's broad scope and its communicative tone make it an ideal choice for all students and professionals who would like to further their understanding of things mathematical.

Oriented Projective Geometry: A Framework for Geometric Computations proposes that oriented projective geometry is a better framework for geometric computations than classical projective geometry. The aim of the book is to stress the value of oriented projective geometry for practical computing and develop it as a rich, consistent, and effective tool for computer programmers. The monograph is comprised of 20 chapters. Chapter 1 gives a quick overview of classical and oriented projective geometry on the plane, and discusses their advantages and disadvantages as computational models. Chapters 2 through 7 define the canonical oriented projective spaces of arbitrary dimension, the operations of join and meet, and the concept of relative orientation. Chapter 8 defines projective maps, the space transformations that preserve incidence and orientation; these maps are used in chapter 9 to define abstract oriented projective spaces. Chapter 10 introduces the notion of projective duality. Chapters 11, 12, and 13 deal with projective functions, projective frames, relative coordinates, and cross-ratio. Chapter 14 tells about convexity in oriented projective spaces. Chapters 15, 16, and 17 show how the affine, Euclidean, and linear vector spaces can be emulated with the oriented projective space. Finally, chapters 18 through 20 discuss the computer representation and manipulation of lines, planes, and other subspaces. Computer scientists and programmers will find this text invaluable.

Author: R. J. Mihalek
Publisher: Academic Press
ISBN: 9781483265209
Release Date: 2014-05-10
Genre: Mathematics

Projective Geometry and Algebraic Structures focuses on the relationship of geometry and algebra, including affine and projective planes, isomorphism, and system of real numbers. The book first elaborates on euclidean, projective, and affine planes, including axioms for a projective plane, algebraic incidence bases, and self-dual axioms. The text then ponders on affine and projective planes, theorems of Desargues and Pappus, and coordination. Topics include algebraic systems and incidence bases, coordinatization theorem, finite projective planes, coordinates, deletion subgeometries, imbedding theorem, and isomorphism. The publication examines projectivities, harmonic quadruples, real projective plane, and projective spaces. Discussions focus on subspaces and dimension, intervals and complements, dual spaces, axioms for a projective space, ordered fields, completeness and the real numbers, real projective plane, and harmonic quadruples. The manuscript is a dependable reference for students and researchers interested in projective planes, system of real numbers, isomorphism, and subspaces and dimensions.

Geared toward upper-level undergraduates and graduate students, this text establishes that projective geometry and linear algebra are essentially identical. The supporting evidence consists of theorems offering an algebraic demonstration of certain geometric concepts. 1952 edition.

Author: Ivan Herman
Publisher: Springer
ISBN: 366218799X
Release Date: 2014-10-09
Genre: Computers

The ultimate goal of all 3D graphics systems is to render 3D objects on a two-dimensional surface such as plotter output or a workstation screen. The approach adopted by most graphics systems is to perform a central or parallel projection of the objects onto the view surface. These systems have to make use of the mathematical results of projective geometry. This monograph has as its aim the derivation of a framework for analyzing the behavior of projective transformations in graphics systems. It is shown that a mathematically precise description of the projective geometrical nature of a graphics system leads not only to a deeper understanding of the system but also to new approaches which result in faster or more precise algorithms. A further aim of the book is to show the importance of advanced mathematics for computer science. Many problems become easier to describe or to solve when the appropriate mathematical tools are used. The author demonstrates that projective geometry has a major role to play in computer graphics.

This text examines the 3 classical geometries and their relationship to general geometric structures, with particular focus on affine geometry, projective metrics, non-Euclidean geometry, and spatial geometry. 1953 edition.