Proof Theory

Author: Wolfram Pohlers
Publisher: Springer Science & Business Media
ISBN: 354069319X
Release Date: 2008-10-01
Genre: Mathematics

The kernel of this book consists of a series of lectures on in?nitary proof theory which I gave during my time at the Westfalische ̈ Wilhelms–Universitat ̈ in Munster ̈ . It was planned as a successor of Springer Lecture Notes in Mathematics 1407. H- ever, when preparing it, I decided to also include material which has not been treated in SLN 1407. Since the appearance of SLN 1407 many innovations in the area of - dinal analysis have taken place. Just to mention those of them which are addressed in this book: Buchholz simpli?ed local predicativity by the invention of operator controlled derivations (cf. Chapter 9, Chapter 11); Weiermann detected applications of methods of impredicative proof theory to the characterization of the provable recursive functions of predicative theories (cf. Chapter 10); Beckmann improved Gentzen’s boundedness theorem (which appears as Stage Theorem (Theorem 6. 6. 1) in this book) to Theorem 6. 6. 9, a theorem which is very satisfying in itself - though its real importance lies in the ordinal analysis of systems, weaker than those treated here. Besides these innovations I also decided to include the analysis of the theory (? –REF) as an example of a subtheory of set theory whose ordinal analysis only 2 0 requires a ?rst step into impredicativity. The ordinal analysis of(? –FXP) of non- 0 1 0 monotone? –de?nable inductive de?nitions in Chapter 13 is an application of the 1 analysis of(? –REF).

Proof And Computation Digitization In Mathematics Computer Science And Philosophy

Author: Mainzer Klaus
Publisher: World Scientific
ISBN: 9789813270954
Release Date: 2018-05-30
Genre: Mathematics

This book is for graduate students and researchers, introducing modern foundational research in mathematics, computer science, and philosophy from an interdisciplinary point of view. Its scope includes Predicative Foundations, Constructive Mathematics and Type Theory, Computation in Higher Types, Extraction of Programs from Proofs, and Algorithmic Aspects in Financial Mathematics. By filling the gap between (under-)graduate level textbooks and advanced research papers, the book gives a scholarly account of recent developments and emerging branches of the aforementioned fields. Contents: Proof and Computation (K Mainzer) Constructive Convex Programming (J Berger and G Svindland) Exploring Predicativity (L Crosilla) Constructive Functional Analysis: An Introduction (H Ishihara) Program Extraction (K Miyamoto) The Data Structures of the Lambda Terms (M Sato) Provable (and Unprovable) Computability (S Wainer) Introduction to Minlog (F Wiesnet) Readership: Graduate students, researchers, and professionals in Mathematics and Computer Science. Keywords: Proof Theory;Computability Theory;Program Extraction;Constructive Analysis;PredicativityReview: Key Features: This book gathers recent contributions of distinguished experts It makes emerging fields accessible to a wider audience, appealing to a broad readership with diverse backgrounds It fills a gap between (under-)graduate level textbooks and state-of-the-art research papers

Concepts of Proof in Mathematics Philosophy and Computer Science

Author: Dieter Probst
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 9781501502644
Release Date: 2016-07-25
Genre: Philosophy

A proof is a successful demonstration that a conclusion necessarily follows by logical reasoning from axioms which are considered evident for the given context and agreed upon by the community. It is this concept that sets mathematics apart from other disciplines and distinguishes it as the prototype of a deductive science. Proofs thus are utterly relevant for research, teaching and communication in mathematics and of particular interest for the philosophy of mathematics. In computer science, moreover, proofs have proved to be a rich source for already certified algorithms. This book provides the reader with a collection of articles covering relevant current research topics circled around the concept 'proof'. It tries to give due consideration to the depth and breadth of the subject by discussing its philosophical and methodological aspects, addressing foundational issues induced by Hilbert's Programme and the benefits of the arising formal notions of proof, without neglecting reasoning in natural language proofs and applications in computer science such as program extraction.

Applied Logic for Computer Scientists

Author: Mauricio Ayala-Rincón
Publisher: Springer
ISBN: 9783319516530
Release Date: 2017-02-04
Genre: Computers

This book provides an introduction to logic and mathematical induction which are the basis of any deductive computational framework. A strong mathematical foundation of the logical engines available in modern proof assistants, such as the PVS verification system, is essential for computer scientists, mathematicians and engineers to increment their capabilities to provide formal proofs of theorems and to certify the robustness of software and hardware systems. The authors present a concise overview of the necessary computational and mathematical aspects of ‘logic’, placing emphasis on both natural deduction and sequent calculus. Differences between constructive and classical logic are highlighted through several examples and exercises. Without neglecting classical aspects of computational logic, the authors also highlight the connections between logical deduction rules and proof commands in proof assistants, presenting simple examples of formalizations of the correctness of algebraic functions and algorithms in PVS. Applied Logic for Computer Scientists will not only benefit students of computer science and mathematics but also software, hardware, automation, electrical and mechatronic engineers who are interested in the application of formal methods and the related computational tools to provide mathematical certificates of the quality and accuracy of their products and technologies.