Quantum Groups

Author: Christian Kassel
Publisher: Springer Science & Business Media
ISBN: 9781461207832
Release Date: 2012-12-06
Genre: Mathematics

Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.

An Invitation to Quantum Groups and Duality

Author: Thomas Timmermann
Publisher: European Mathematical Society
ISBN: 3037190434
Release Date: 2008-01-01
Genre: Mathematics

This book provides an introduction to the theory of quantum groups with emphasis on their duality and on the setting of operator algebras. The book is addressed to graduate students and non-experts from other fields. Only basic knowledge of (multi-)linear algebra is required for the first part, while the second and third part assume some familiarity with Hilbert spaces, CÝsuperscript *¨-algebras, and von Neumann algebras.

Introduction to Quantum Groups and Crystal Bases

Author: Jin Hong
Publisher: American Mathematical Soc.
ISBN: 9780821828748
Release Date: 2002-01
Genre: Mathematics

The notion of a ``quantum group'' was introduced by V.G. Dinfeld and M. Jimbo, independently, in their study of the quantum Yang-Baxter equation arising from 2-dimensional solvable lattice models. Quantum groups are certain families of Hopf algebras that are deformations of universal enveloping algebras of Kac-Moody algebras. And over the past 20 years, they have turned out to be the fundamental algebraic structure behind many branches of mathematics and mathematical physics, such as solvable lattice models in statistical mechanics, topological invariant theory of links and knots, representation theory of Kac-Moody algebras, representation theory of algebraic structures, topological quantum field theory, geometric representation theory, and $C^*$-algebras. In particular, the theory of ``crystal bases'' or ``canonical bases'' developed independently by M. Kashiwara and G. Lusztig provides a powerful combinatorial and geometric tool to study the representations of quantum groups. The purpose of this book is to provide an elementary introduction to the theory of quantum groups and crystal bases, focusing on the combinatorial aspects of the theory.

Quantum Theory for Mathematicians

Author: Brian C. Hall
Publisher: Springer Science & Business Media
ISBN: 9781461471165
Release Date: 2013-06-19
Genre: Science

Although ideas from quantum physics play an important role in many parts of modern mathematics, there are few books about quantum mechanics aimed at mathematicians. This book introduces the main ideas of quantum mechanics in language familiar to mathematicians. Readers with little prior exposure to physics will enjoy the book's conversational tone as they delve into such topics as the Hilbert space approach to quantum theory; the Schrödinger equation in one space dimension; the Spectral Theorem for bounded and unbounded self-adjoint operators; the Stone–von Neumann Theorem; the Wentzel–Kramers–Brillouin approximation; the role of Lie groups and Lie algebras in quantum mechanics; and the path-integral approach to quantum mechanics. The numerous exercises at the end of each chapter make the book suitable for both graduate courses and independent study. Most of the text is accessible to graduate students in mathematics who have had a first course in real analysis, covering the basics of L2 spaces and Hilbert spaces. The final chapters introduce readers who are familiar with the theory of manifolds to more advanced topics, including geometric quantization.

Foundations of Quantum Group Theory

Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 0521648688
Release Date: 2000-04-13
Genre: Mathematics

Now in paperback, this is a graduate level text for theoretical physicists and mathematicians which systematically lays out the foundations for the subject of Quantum Groups in a clear and accessible way. The topic is developed in a logical manner with quantum groups (Hopf Algebras) treated as mathematical objects in their own right. After formal definitions and basic theory, the book goes on to cover such topics as quantum enveloping algebras, matrix quantum groups, combinatorics, cross products of various kinds, the quantum double, the semiclassical theory of Poisson-Lie groups, the representation theory, braided groups and applications to q-deformed physics. Explicit proofs and many examples will allow the reader quickly to pick up the techniques needed for working in this exciting new field.

A Quantum Groups Primer

Author: Shahn Majid
Publisher: Cambridge University Press
ISBN: 0521010411
Release Date: 2002-04-04
Genre: Mathematics

Self-contained introduction to quantum groups as algebraic objects, suitable as a textbook for graduate courses.

A Guide to Quantum Groups

Author: Vyjayanthi Chari
Publisher: Cambridge University Press
ISBN: 0521558840
Release Date: 1995-07-27
Genre: Mathematics

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. This book gives a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Researchers in mathematics and theoretical physics will enjoy this book.

Representations of Algebraic Groups Quantum Groups and Lie Algebras

Author: Georgia Benkart
Publisher: American Mathematical Soc.
ISBN: 9780821839249
Release Date: 2006
Genre: Mathematics

The book contains several well-written, accessible survey papers in many interrelated areas of current research. These areas cover various aspects of the representation theory of Lie algebras, finite groups of Lie types, Hecke algebras, and Lie super algebras. Geometric methods have been instrumental in representation theory, and these proceedings include surveys on geometric as well as combinatorial constructions of the crystal basis for representations of quantum groups. Humphreys' paper outlines intricate connections among irreducible representations of certain blocks of reduced enveloping algebras of semi-simple Lie algebras in positive characteristic, left cells in two sided cells of affine Weyl groups, and the geometry of the nilpotent orbits. All these papers provide the reader with a broad picture of the interaction of many different research areas and should be helpful to those who want to have a glimpse of current research involving representation theory.

Quantum Groups

Author: Ross Street
Publisher: Cambridge University Press
ISBN: 9781139461443
Release Date: 2007-01-18
Genre: Mathematics

Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.

Lectures on Quantum Groups

Author: Jens Carsten Jantzen
Publisher: American Mathematical Soc.
ISBN: 0821872346
Release Date: 1996
Genre: Mathematics

Starting with the quantum analog of sl2, the author carefully leads the reader through all the details necessary for full understanding of the subject, particularly emphasizing similarities and differences with the classical theory. The final chapters of the book describe the Kashiwara-Lusztig theory of so-called crystal (or canonical) bases in representations of complex semisimple Lie algebra.

An Introduction to Quantum Theory

Author: Keith Hannabuss
Publisher: Clarendon Press
ISBN: 0191588733
Release Date: 1997-03-20
Genre: Science

This book provides an introduction to quantum theory primarily for students of mathematics. Although the approach is mainly traditional the discussion exploits ideas of linear algebra, and points out some of the mathematical subtleties of the theory. Amongst the less traditional topics are Bell's inequalities, coherent and squeezed states, and introductions to group representation theory. Later chapters discuss relativistic wave equations and elementary particle symmetries from a group theoretical standpoint rather than the customary Lie algebraic approach. This book is intended for the later years of an undergraduate course or for graduates. It assumes a knowledge of basic linear algebra and elementary group theory, though for convenience these are also summarized in an appendix.

Recent Advances in Representation Theory Quantum Groups Algebraic Geometry and Related Topics

Author: Pramod M. Achar
Publisher: American Mathematical Society
ISBN: 9780821898529
Release Date: 2014-08-27
Genre: Mathematics

This volume contains the proceedings of two AMS Special Sessions "Geometric and Algebraic Aspects of Representation Theory" and "Quantum Groups and Noncommutative Algebraic Geometry" held October 13–14, 2012, at Tulane University, New Orleans, Louisiana. Included in this volume are original research and some survey articles on various aspects of representations of algebras including Kac—Moody algebras, Lie superalgebras, quantum groups, toroidal algebras, Leibniz algebras and their connections with other areas of mathematics and mathematical physics.

Introduction to Quantum Groups

Author: George Lusztig
Publisher: Springer Science & Business Media
ISBN: 0817647171
Release Date: 2010-10-27
Genre: Mathematics

The quantum groups discussed in this book are the quantized enveloping algebras introduced by Drinfeld and Jimbo in 1985, or variations thereof. The theory of quantum groups has led to a new, extremely rigid structure, in which the objects of the theory are provided with canonical basis with rather remarkable properties. This book will be of interest to mathematicians working in the representation theory of Lie groups and Lie algebras, knot theorists and to theoretical physicists and graduate students. Since large parts of the book are independent of the theory of perverse sheaves, the book could also be used as a text book.

Quantum Groups in Two Dimensional Physics

Author: Cisar Gómez
Publisher: Cambridge University Press
ISBN: 0521020042
Release Date: 2005-09-15
Genre: Science

A 1996 introduction to integrability and conformal field theory in two dimensions using quantum groups.

Quantum groups

Author: Steven Shnider
Publisher: Intl Pr of Boston Inc
ISBN: UOM:39015032195029
Release Date: 1993
Genre: Mathematics