Author: Mark S. Swanson
Publisher: Courier Corporation
ISBN: 9780486493060
Release Date: 2014-02-19
Genre: Science

Graduate-level, systematic presentation of path integral approach to calculating transition elements, partition functions, and source functionals. Covers Grassmann variables, field and gauge field theory, perturbation theory, and nonperturbative results. 1992 edition.

Author: Gert Roepstorff
Publisher: Springer Science & Business Media
ISBN: 9783642578861
Release Date: 2012-12-06
Genre: Science

Specifically designed to introduce graduate students to the functional integration method in contemporary physics as painlessly as possible, the book concentrates on the conceptual problems inherent in the path integral formalism. Throughout, the striking interplay between stochastic processes, statistical physics and quantum mechanics comes to the fore, and all the methods of fundamental interest are generously illustrated by important physical examples.

Author: Harald J W MÃ¼ller-Kirsten
Publisher: World Scientific Publishing Company
ISBN: 9789814397766
Release Date: 2012-07-19
Genre: Science

This text on quantum mechanics begins by covering all the main topics of an introduction to the subject. It then concentrates on newer developments. In particular it continues with the perturbative solution of the Schrödinger equation for various potentials and thereafter with the introduction and evaluation of their path integral counterparts. Considerations of the large order behavior of the perturbation expansions show that in most applications these are asymptotic expansions. The parallel consideration of path integrals requires the evaluation of these around periodic classical configurations, the fluctuation equations about which lead back to specific wave equations. The period of the classical configurations is related to temperature, and permits transitions to the thermal domain to be classified as phase transitions. In this second edition of the text important applications and numerous examples have been added. In particular, the chapter on the Coulomb potential has been extended to include an introduction to chemical bonds, the chapter on periodic potentials has been supplemented by a section on the band theory of metals and semiconductors, and in the chapter on large order behavior a section has been added illustrating the success of converging factors in the evaluation of asymptotic expansions. Detailed calculations permit the reader to follow every step.

This is the fifth, expanded edition of the comprehensive textbook published in 1990 on the theory and applications of path integrals. It is the first book to explicitly solve path integrals of a wide variety of nontrivial quantum-mechanical systems, in particular the hydrogen atom. The solutions have been made possible by two major advances. The first is a new euclidean path integral formula which increases the restricted range of applicability of Feynman''s time-sliced formula to include singular attractive 1/r- and 1/r2-potentials. The second is a new nonholonomic mapping principle carrying physical laws in flat spacetime to spacetimes with curvature and torsion, which leads to time-sliced path integrals that are manifestly invariant under coordinate transformations. In addition to the time-sliced definition, the author gives a perturbative, coordinate-independent definition of path integrals, which makes them invariant under coordinate transformations. A consistent implementation of this property leads to an extension of the theory of generalized functions by defining uniquely products of distributions. The powerful Feynman-Kleinert variational approach is explained and developed systematically into a variational perturbation theory which, in contrast to ordinary perturbation theory, produces convergent results. The convergence is uniform from weak to strong couplings, opening a way to precise evaluations of analytically unsolvable path integrals in the strong-coupling regime where they describe critical phenomena. Tunneling processes are treated in detail, with applications to the lifetimes of supercurrents, the stability of metastable thermodynamic phases, and the large-order behavior of perturbation expansions. A variational treatment extends the range of validity to small barriers. A corresponding extension of the large-order perturbation theory now also applies to small orders. Special attention is devoted to path integrals with topological restrictions needed to understand the statistical properties of elementary particles and the entanglement phenomena in polymer physics and biophysics. The ChernoOe1/4OC Simons theory of particles with fractional statistics (anyons) is introduced and applied to explain the fractional quantum Hall effect. The relevance of path integrals to financial markets is discussed, and improvements of the famous BlackoOe1/4OC Scholes formula for option prices are developed which account for the fact, recently experienced in the world markets, that large fluctuations occur much more frequently than in Gaussian distributions."

Author: L. S. Schulman
Publisher: Courier Corporation
ISBN: 9780486137025
Release Date: 2012-10-10
Genre: Science

Suitable for advanced undergraduates and graduate students, this text develops the techniques of path integration and deals with applications, covering a host of illustrative examples. 26 figures. 1981 edition.

"Strongly recommended" by the American Journal of Physics, this volume serves as a text for advanced undergraduates and graduate students of physics as well as a reference for professionals. Clear in its presentation and scrupulous in its attention to detail, the treatment originally appeared in a two-volume French edition. This convenient single-volume translation begins with formalism and its interpretation, starting with the origins of quantum theory and examinations of matter waves and the Schrödinger equation, one-dimensional quantized systems, the uncertainty relations, and the mathematical framework and physical content of formalism. The second half opens with an exploration of symmetries and invariance, including a consideration of angular momentum, identical particles and the Pauli exclusion principle, invariance and conservation laws, and time reversal. Methods of approximation include those involving stationary perturbations, the equation of motion, variational method, and collision theory. The final chapters review the elements of relativistic quantum mechanics, and each of the two volumes concludes with useful appendixes.

Author: Alexander L. Fetter
Publisher: Courier Corporation
ISBN: 9780486134758
Release Date: 2012-03-08
Genre: Science

Self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 1971 edition.

This volume addresses the broad formal aspects and applications of the quantum theory of scattering in atomic and nuclear collisions. An encyclopedic source of pioneering work, it serves as a text for students and a reference for professionals in the fields of chemistry, physics, and astrophysics. The self-contained treatment begins with the general theory of scattering of a particle by a central field. Subsequent chapters explore particle scattering by a non-central field, collisions between composite particles, the time-dependent theory of scattering, and nuclear reactions. An examination of dispersion relations concludes the text. Numerous graphs, tables, and footnotes illuminate each chapter, in addition to helpful appendixes and bibliographies.

Author: Paul A. M. Dirac
Publisher: Courier Corporation
ISBN: 9780486320281
Release Date: 2013-05-27
Genre: Science

Four concise, brilliant lectures on mathematical methods in quantum mechanics from Nobel Prize–winning quantum pioneer build on idea of visualizing quantum theory through the use of classical mechanics.

Author: Ennio Gozzi
Publisher: World Scientific Publishing Company
ISBN: 9789814603959
Release Date: 2015-11-18
Genre: Science

This book aims to provide a quick pedagogical introduction to path integrals. It contains original material that never before has appeared in a book, for example the path integrals for the Wigner functions and for Classical Mechanics. This application to Classical Mechanics connects different fields like Hamiltonian mechanics and differential geometry, so the book is suitable for students and researchers from various disciplines.

Author: Frederick W. Byron
Publisher: Courier Corporation
ISBN: 9780486135069
Release Date: 2012-04-26
Genre: Science

Graduate-level text offers unified treatment of mathematics applicable to many branches of physics. Theory of vector spaces, analytic function theory, theory of integral equations, group theory, and more. Many problems. Bibliography.

Author: Tom Lancaster
Publisher: Oxford University Press
ISBN: 9780199699322
Release Date: 2014-04
Genre: Science

Quantum field theory provides the theoretical backbone to most modern physics. This book is designed to bring quantum field theory to a wider audience of physicists. It is packed with worked examples, witty diagrams, and applications intended to introduce a new audience to this revolutionary theory.

Author: Thomas F. Jordan
Publisher: Courier Corporation
ISBN: 9780486140544
Release Date: 2012-09-20
Genre: Science

Suitable for advanced undergraduates and graduate students, this compact treatment examines linear space, functionals, and operators; diagonalizing operators; operator algebras; and equations of motion. 1969 edition.