R for Everyone

Author: Jared P. Lander
Publisher: Addison-Wesley Professional
ISBN: 9780133257151
Release Date: 2013-12-20
Genre: Computers

Statistical Computation for Programmers, Scientists, Quants, Excel Users, and Other Professionals Using the open source R language, you can build powerful statistical models to answer many of your most challenging questions. R has traditionally been difficult for non-statisticians to learn, and most R books assume far too much knowledge to be of help. R for Everyone is the solution. Drawing on his unsurpassed experience teaching new users, professional data scientist Jared P. Lander has written the perfect tutorial for anyone new to statistical programming and modeling. Organized to make learning easy and intuitive, this guide focuses on the 20 percent of R functionality you’ll need to accomplish 80 percent of modern data tasks. Lander’s self-contained chapters start with the absolute basics, offering extensive hands-on practice and sample code. You’ll download and install R; navigate and use the R environment; master basic program control, data import, and manipulation; and walk through several essential tests. Then, building on this foundation, you’ll construct several complete models, both linear and nonlinear, and use some data mining techniques. By the time you’re done, you won’t just know how to write R programs, you’ll be ready to tackle the statistical problems you care about most. COVERAGE INCLUDES • Exploring R, RStudio, and R packages • Using R for math: variable types, vectors, calling functions, and more • Exploiting data structures, including data.frames, matrices, and lists • Creating attractive, intuitive statistical graphics • Writing user-defined functions • Controlling program flow with if, ifelse, and complex checks • Improving program efficiency with group manipulations • Combining and reshaping multiple datasets • Manipulating strings using R’s facilities and regular expressions • Creating normal, binomial, and Poisson probability distributions • Programming basic statistics: mean, standard deviation, and t-tests • Building linear, generalized linear, and nonlinear models • Assessing the quality of models and variable selection • Preventing overfitting, using the Elastic Net and Bayesian methods • Analyzing univariate and multivariate time series data • Grouping data via K-means and hierarchical clustering • Preparing reports, slideshows, and web pages with knitr • Building reusable R packages with devtools and Rcpp • Getting involved with the R global community

Data Science f r Dummies

Author: Lillian Pierson
Publisher: John Wiley & Sons
ISBN: 9783527806751
Release Date: 2016-04-22
Genre: Mathematics

Daten, Daten, Daten? Sie haben schon Kenntnisse in Excel und Statistik, wissen aber noch nicht, wie all die Datensätze helfen sollen, bessere Entscheidungen zu treffen? Von Lillian Pierson bekommen Sie das dafür notwendige Handwerkszeug: Bauen Sie Ihre Kenntnisse in Statistik, Programmierung und Visualisierung aus. Nutzen Sie Python, R, SQL, Excel und KNIME. Zahlreiche Beispiele veranschaulichen die vorgestellten Methoden und Techniken. So können Sie die Erkenntnisse dieses Buches auf Ihre Daten übertragen und aus deren Analyse unmittelbare Schlüsse und Konsequenzen ziehen.

Datenanalyse mit Python

Author: Wes McKinney
Publisher: O'Reilly
ISBN: 9783960102144
Release Date: 2018-10-29
Genre: Computers

Erfahren Sie alles über das Manipulieren, Bereinigen, Verarbeiten und Aufbereiten von Datensätzen mit Python: Aktualisiert auf Python 3.6, zeigt Ihnen dieses konsequent praxisbezogene Buch anhand konkreter Fallbeispiele, wie Sie eine Vielzahl von typischen Datenanalyse-Problemen effektiv lösen. Gleichzeitig lernen Sie die neuesten Versionen von pandas, NumPy, IPython und Jupyter kennen.Geschrieben von Wes McKinney, dem Begründer des pandas-Projekts, bietet Datenanalyse mit Python einen praktischen Einstieg in die Data-Science-Tools von Python. Das Buch eignet sich sowohl für Datenanalysten, für die Python Neuland ist, als auch für Python-Programmierer, die sich in Data Science und Scientific Computing einarbeiten wollen. Daten und zugehöriges Material des Buchs sind auf GitHub verfügbar.Aus dem Inhalt:Nutzen Sie die IPython-Shell und Jupyter Notebook für das explorative ComputingLernen Sie Grundfunktionen und fortgeschrittene Features von NumPy kennenSetzen Sie die Datenanalyse-Tools der pandasBibliothek einVerwenden Sie flexible Werkzeuge zum Laden, Bereinigen, Transformieren, Zusammenführen und Umformen von DatenErstellen Sie interformative Visualisierungen mit matplotlibWenden Sie die GroupBy-Mechanismen von pandas an, um Datensätzen zurechtzuschneiden, umzugestalten und zusammenzufassenAnalysieren und manipulieren Sie verschiedenste Zeitreihen-DatenFür diese aktualisierte 2. Auflage wurde der gesamte Code an Python 3.6 und die neuesten Versionen der pandas-Bibliothek angepasst. Neu in dieser Auflage: Informationen zu fortgeschrittenen pandas-Tools sowie eine kurze Einführung in statsmodels und scikit-learn.

Doubly Classified Model with R

Author: Teck Kiang Tan
Publisher: Springer
ISBN: 9789811069956
Release Date: 2017-11-11
Genre: Computers

This book provides practical applications of doubly classified models by using R syntax to generate the models. It also presents these models in symbolic tables so as to cater to those who are not mathematically inclined, while numerous examples throughout the book illustrate the concepts and their applications. For those who are not aware of this modeling approach, it serves as a good starting point to acquire a basic understanding of doubly classified models. It is also a valuable resource for academics, postgraduate students, undergraduates, data analysts and researchers who are interested in examining square contingency tables.

Computational Methods for Numerical Analysis with R

Author: James P Howard, II
Publisher: CRC Press
ISBN: 9781351646505
Release Date: 2017-07-12
Genre: Mathematics

Computational Methods for Numerical Analysis with R is an overview of traditional numerical analysis topics presented using R. This guide shows how common functions from linear algebra, interpolation, numerical integration, optimization, and differential equations can be implemented in pure R code. Every algorithm described is given with a complete function implementation in R, along with examples to demonstrate the function and its use. Computational Methods for Numerical Analysis with R is intended for those who already know R, but are interested in learning more about how the underlying algorithms work. As such, it is suitable for statisticians, economists, and engineers, and others with a computational and numerical background.

The Design of Everyday Things

Author: Norman Don
Publisher: Vahlen
ISBN: 9783800648108
Release Date: 2016-01-11
Genre: Business & Economics

Apple, Audi, Braun oder Samsung machen es vor: Gutes Design ist heute eine kritische Voraussetzung für erfolgreiche Produkte. Dieser Klassiker beschreibt die fundamentalen Prinzipien, um Dinge des täglichen Gebrauchs umzuwandeln in unterhaltsame und zufriedenstellende Produkte. Don Norman fordert ein Zusammenspiel von Mensch und Technologie mit dem Ziel, dass Designer und Produktentwickler die Bedürfnisse, Fähigkeiten und Handlungsweisen der Nutzer in den Vordergrund stellen und Designs an diesen angepasst werden. The Design of Everyday Things ist eine informative und spannende Einführung für Designer, Marketer, Produktentwickler und für alle an gutem Design interessierten Menschen. Zum Autor Don Norman ist emeritierter Professor für Kognitionswissenschaften. Er lehrte an der University of California in San Diego und der Northwest University in Illinois. Mitte der Neunzigerjahre leitete Don Norman die Advanced Technology Group bei Apple. Dort prägte er den Begriff der User Experience, um über die reine Benutzbarkeit hinaus eine ganzheitliche Erfahrung der Anwender im Umgang mit Technik in den Vordergrund zu stellen. Norman ist Mitbegründer der Beratungsfirma Nielsen Norman Group und hat unter anderem Autohersteller von BMW bis Toyota beraten. „Keiner kommt an Don Norman vorbei, wenn es um Fragen zu einem Design geht, das sich am Menschen orientiert.“ Brand Eins 7/2013 „Design ist einer der wichtigsten Wettbewerbsvorteile. Dieses Buch macht Spaß zu lesen und ist von größter Bedeutung.” Tom Peters, Co-Autor von „Auf der Suche nach Spitzenleistungen“

Making Your Case

Author: Charles Auerbach
Publisher: Oxford University Press
ISBN: 9780190228101
Release Date: 2015-06-04
Genre: Social Science

There is a growing need for research within practice settings. Increasing competition for funding requires organizations to demonstrate that the funding they are seeking is going towards effective programming. Additionally, the evidence-based practice movement is generally pushing organizations towards research activities, both as producers and consumers.There have been many books written about research methodology and data analysis in the helping professions, and many books have been written about using R to analyze and present data; however, this book specifically addresses using R to evaluate programs in organizational settings. This book is divided into three sections. The first section addresses background information that is helpful in conducting practice-based research. The second section of the book provides necessary background to begin working with R. Topics include how to download R and RStudio, navigation, R packages, basic R functions, and importing data. This section also introduces The Clinical Record, a freely available database program to help organizations record and track client information. The remainder of the book uses case studies to illustrate how to use R to conduct program evaluations. Techniques include data description and visualization, bivariate analysis, simple and multiple regression, and logistic regression. The final chapter illustrates a comprehensive summary of the skills demonstrated throughout the book using The Clinical Record as a data repository.

R in a Nutshell

Author: Joseph Adler
Publisher: O'Reilly Germany
ISBN: 9783897216501
Release Date: 2010-12-31
Genre: Computers

Wozu sollte man R lernen? Da gibt es viele Gründe: Weil man damit natürlich ganz andere Möglichkeiten hat als mit einer Tabellenkalkulation wie Excel, aber auch mehr Spielraum als mit gängiger Statistiksoftware wie SPSS und SAS. Anders als bei diesen Programmen hat man nämlich direkten Zugriff auf dieselbe, vollwertige Programmiersprache, mit der die fertigen Analyse- und Visualisierungsmethoden realisiert sind – so lassen sich nahtlos eigene Algorithmen integrieren und komplexe Arbeitsabläufe realisieren. Und nicht zuletzt, weil R offen gegenüber beliebigen Datenquellen ist, von der einfachen Textdatei über binäre Fremdformate bis hin zu den ganz großen relationalen Datenbanken. Zudem ist R Open Source und erobert momentan von der universitären Welt aus die professionelle Statistik. R kann viel. Und Sie können viel mit R machen – wenn Sie wissen, wie es geht. Willkommen in der R-Welt: Installieren Sie R und stöbern Sie in Ihrem gut bestückten Werkzeugkasten: Sie haben eine Konsole und eine grafische Benutzeroberfläche, unzählige vordefinierte Analyse- und Visualisierungsoperationen – und Pakete, Pakete, Pakete. Für quasi jeden statistischen Anwendungsbereich können Sie sich aus dem reichen Schatz der R-Community bedienen. Sprechen Sie R! Sie müssen Syntax und Grammatik von R nicht lernen – wie im Auslandsurlaub kommen Sie auch hier gut mit ein paar aufgeschnappten Brocken aus. Aber es lohnt sich: Wenn Sie wissen, was es mit R-Objekten auf sich hat, wie Sie eigene Funktionen schreiben und Ihre eigenen Pakete schnüren, sind Sie bei der Analyse Ihrer Daten noch flexibler und effektiver. Datenanalyse und Statistik in der Praxis: Anhand unzähliger Beispiele aus Medizin, Wirtschaft, Sport und Bioinformatik lernen Sie, wie Sie Daten aufbereiten, mithilfe der Grafikfunktionen des lattice-Pakets darstellen, statistische Tests durchführen und Modelle anpassen. Danach werden Ihnen Ihre Daten nichts mehr verheimlichen.

R f r Dummies

Author: Andrie de Vries
Publisher: John Wiley & Sons
ISBN: 9783527812523
Release Date: 2017-11-07
Genre: Computers

Wollen Sie auch die umfangreichen Möglichkeiten von R nutzen, um Ihre Daten zu analysieren, sind sich aber nicht sicher, ob Sie mit der Programmiersprache wirklich zurechtkommen? Keine Sorge - dieses Buch zeigt Ihnen, wie es geht - selbst wenn Sie keine Vorkenntnisse in der Programmierung oder Statistik haben. Andrie de Vries und Joris Meys zeigen Ihnen Schritt für Schritt und anhand zahlreicher Beispiele, was Sie alles mit R machen können und vor allem wie Sie es machen können. Von den Grundlagen und den ersten Skripten bis hin zu komplexen statistischen Analysen und der Erstellung aussagekräftiger Grafiken. Auch fortgeschrittenere Nutzer finden in diesem Buch viele Tipps und Tricks, die Ihnen die Datenauswertung erleichtern.

Programmieren mit Scala

Author: Dean Wampler
Publisher: O'Reilly Germany
ISBN: 9783897216488
Release Date: 2010-10-31
Genre: Computers

Sie ist elegant, schlank, modern und flexibel: Die Rede ist von Scala, der neuen Programmiersprache für die Java Virtual Machine (JVM). Sie vereint die Vorzüge funktionaler und objektorientierter Programmierung, ist typsicherer als Java, lässt sich nahtlos in die Java-Welt integrieren – und eine in Scala entwickelte Anwendung benötigt oft nur einen Bruchteil der Codezeilen ihres Java-Pendants. Kein Wunder, dass immer mehr Firmen, deren große, geschäftskritische Anwendungen auf Java basieren, auf Scala umsteigen, um ihre Produktivität und die Skalierbarkeit ihrer Software zu erhöhen. Das wollen Sie auch? Dann lassen Sie sich von den Scala-Profis Dean Wampler und Alex Payne zeigen, wie es geht. Ihre Werkzeugkiste: Schon bevor Sie loslegen, sind Sie weiter, als Sie denken: Sie können Ihre Java-Programme weiter verwenden, Java-Bibliotheken nutzen, Java von Scala aus aufrufen und Scala von Java aus. Auch Ihre bevorzugten Entwicklungswerkzeuge wie NetBeans, IntelliJ IDEA oder Eclipse stehen Ihnen weiter zur Verfügung, dazu Kommandozeilen-Tools, Plugins für Editoren, Werkzeuge von Drittanbietern – und natürlich Ihre Programmiererfahrung. In Programmieren mit Scala erfahren Sie, wie Sie sich all das zunutze machen. Das Hybridmodell: Die Paradigmen "funktional" und "objektorientiert" sind keine Gegensätze, sondern ergänzen sich unter dem Scala-Dach zu einem sehr produktiven Ganzen. Nutzen Sie die Vorteile funktionaler Programmierung, wann immer sich das anbietet – und seien Sie so frei, auf die guten alten Seiteneffekte zu bauen, wenn Sie das für nötig halten. Futter für die Profis: Skalierbare Nebenläufigkeit mit Aktoren, Aufzucht und Pflege von XML mit Scala, Domainspezifische Sprachen, Tipps zum richtigen Anwendungsdesign – das sind nur ein paar der fortgeschrittenen Themen, in die Sie mit den beiden Autoren eintauchen. Danach sind Sie auch Profi im Programmieren mit Scala.

Statistik f r Dummies

Author: Deborah Rumsey
Publisher: John Wiley & Sons
ISBN: 9783527705948
Release Date: 2010-04-05
Genre: Mathematics

Entdecken Sie mit "Statistik für Dummies" Ihren Spaß an der Statistik und werfen Sie einen Blick hinter die Kulissen der so beliebten Manipulation von Zahlenmaterial! Deborah Rumsey zeigt Ihnen das nötige statistische Handwerkszeug wie Stichprobe, Wahrscheinlichkeit, Bias, Median, Durchschnitt und Korrelation. Sie lernen die verschiedenen grafischen Darstellungsmöglichkeiten von statistischem Material kennen und werden über die unterschiedlichen Methoden der Auswertung erstaunt sein. Schärfen Sie mit diesem Buch Ihr Bewusstsein für Zahlen und deren Interpretation, so dass Ihnen keiner mehr etwas vormachen kann!