Ramsey Theory for Discrete Structures

Author: Hans Jürgen Prömel
Publisher: Springer Science & Business Media
ISBN: 9783319013152
Release Date: 2013-12-04
Genre: Mathematics

This monograph covers some of the most important developments in Ramsey theory from its beginnings in the early 20th century via its many breakthroughs to recent important developments in the early 21st century. The book first presents a detailed discussion of the roots of Ramsey theory before offering a thorough discussion of the role of parameter sets. It presents several examples of structures that can be interpreted in terms of parameter sets and features the most fundamental Ramsey-type results for parameter sets: Hales-Jewett's theorem and Graham-Rothschild1s Ramsey theorem as well as their canonical versions and several applications. Next, the book steps back to the most basic structure, to sets. It reviews classic results as well as recent progress on Ramsey numbers and the asymptotic behavior of classical Ramsey functions. In addition, it presents product versions of Ramsey's theorem, a combinatorial proof of the incompleteness of Peano arithmetic, provides a digression to discrepancy theory and examines extensions of Ramsey's theorem to larger cardinals. The next part of the book features an in-depth treatment of the Ramsey problem for graphs and hypergraphs. It gives an account on the existence of sparse and restricted Ramsey theorem's using sophisticated constructions as well as probabilistic methods. Among others it contains a proof of the induced Graham-Rothschild theorem and the random Ramsey theorem. The book closes with a chapter on one of the recent highlights of Ramsey theory: a combinatorial proof of the density Hales-Jewett theorem. This book provides graduate students as well as advanced researchers with a solid introduction and reference to the field.

Ramsey Theory

Author: Ronald L. Graham
Publisher: John Wiley & Sons
ISBN: 0471500461
Release Date: 1990-03-16
Genre: Mathematics

"Discrete mathematics, the study of finite structures, is one of the fastest-growing areas in mathematics. The wide applicability of its evolving techniques points to the rapidity with which the field is moving from its beginnings to its maturity, and reflects the ever-increasing interaction between discrete mathematics and computer science. This Series provides broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, and the analysis of algorithms." -- Book cover.

Discrete Mathematics with Proof

Author: Eric Gossett
Publisher: John Wiley & Sons
ISBN: 9780470457931
Release Date: 2009-06-22
Genre: Mathematics

"Discrete mathematics has become increasingly popular in recent years due to its growing applications in the field of computer science. - Discrete Mathematics with Proof, Second Edition continues to facilitate an up-to-date understanding of this important topic, exposing readers to a wide range of modern and technological applications. Assuming only a basic background in calculus, Discrete Mathematics with Proof, Second Edition is an excellent book for mathematics and computer science courses at the undergraduate level. - It is also a valuable resource for professionals in various technical fields who would like an introduction to discrete mathematics."--Jacket.

Contemporary Trends in Discrete Mathematics

Author: Ronald L. Graham
Publisher: American Mathematical Soc.
ISBN: 0821885812
Release Date: 1999-01-01
Genre: Mathematics

Discrete mathematics stands among the leading disciplines of mathematics and theoretical computer science. This is due primarily to its increasing role in university curriculae and its growing importance in applications ranging from optimization to molecular biology. An inaugural conference was held cooperatively by DIMATIA and DIMACS to focus on the versatility, width, and depth of current progress in the subject area. This volume offers a well-balanced blend of research and survey papers reflecting the exciting, attractive topics in contemporary discrete mathematics. Discussed in the book are topics such as graph theory, partially ordered sets, geometrical Ramsey theory, computational complexity issues and applications.

Ramsey Theory

Author: Alexander Soifer
Publisher: Springer Science & Business Media
ISBN: 0817680926
Release Date: 2010-10-29
Genre: Mathematics

This book explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike.

Mathematics of Ramsey Theory

Author: Jaroslav Nesetril
Publisher: Springer Science & Business Media
ISBN: 9783642729058
Release Date: 2012-12-06
Genre: Mathematics

One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.

Connections in Discrete Mathematics

Author: Steve Butler
Publisher: Cambridge University Press
ISBN: 9781107153981
Release Date: 2018-05-31
Genre: Mathematics

Many of the best researchers and writers in discrete mathematics come together in a volume inspired by Ron Graham.

Discrete Mathematics

Author: CTI Reviews
Publisher: Cram101 Textbook Reviews
ISBN: 9781467293969
Release Date: 2016-10-16
Genre: Education

Facts101 is your complete guide to Discrete Mathematics. In this book, you will learn topics such as as those in your book plus much more. With key features such as key terms, people and places, Facts101 gives you all the information you need to prepare for your next exam. Our practice tests are specific to the textbook and we have designed tools to make the most of your limited study time.

Mathematics of Ramsey theory

Author: Jaroslav Nes̆etřil
Publisher: Springer Verlag
ISBN: UCAL:B5008670
Release Date: 1990
Genre: Mathematics

One of the important areas of contemporary combinatorics is Ramsey theory. Ramsey theory is basically the study of structure preserved under partitions. The general philosophy is reflected by its interdisciplinary character. The ideas of Ramsey theory are shared by logicians, set theorists and combinatorists, and have been successfully applied in other branches of mathematics. The whole subject is quickly developing and has some new and unexpected applications in areas as remote as functional analysis and theoretical computer science. This book is a homogeneous collection of research and survey articles by leading specialists. It surveys recent activity in this diverse subject and brings the reader up to the boundary of present knowledge. It covers virtually all main approaches to the subject and suggests various problems for individual research.

Recent Progress in General Topology II

Author: Miroslav Hušek
Publisher: Elsevier
ISBN: 9780444509802
Release Date: 2002
Genre: Mathematics

The book presents surveys describing recent developments in most of the primary subfields of General Topology and its applications to Algebra and Analysis during the last decade. It follows freely the previous edition (North Holland, 1992), Open Problems in Topology (North Holland, 1990) and Handbook of Set-Theoretic Topology (North Holland, 1984). The book was prepared in connection with the Prague Topological Symposium, held in 2001. During the last 10 years the focus in General Topology changed and therefore the selection of topics differs slightly from those chosen in 1992. The following areas experienced significant developments: Topological Groups, Function Spaces, Dimension Theory, Hyperspaces, Selections, Geometric Topology (including Infinite-Dimensional Topology and the Geometry of Banach Spaces). Of course, not every important topic could be included in this book. Except surveys, the book contains several historical essays written by such eminent topologists as: R.D. Anderson, W.W. Comfort, M. Henriksen, S. Mardeŝić, J. Nagata, M.E. Rudin, J.M. Smirnov (several reminiscences of L. Vietoris are added). In addition to extensive author and subject indexes, a list of all problems and questions posed in this book are added. List of all authors of surveys: A. Arhangel'skii, J. Baker and K. Kunen, H. Bennett and D. Lutzer, J. Dijkstra and J. van Mill, A. Dow, E. Glasner, G. Godefroy, G. Gruenhage, N. Hindman and D. Strauss, L. Hola and J. Pelant, K. Kawamura, H.-P. Kuenzi, W. Marciszewski, K. Martin and M. Mislove and M. Reed, R. Pol and H. Torunczyk, D. Repovs and P. Semenov, D. Shakhmatov, S. Solecki, M. Tkachenko.

A Beginner s Guide to Graph Theory

Author: W.D. Wallis
Publisher: Springer Science & Business Media
ISBN: 0817644849
Release Date: 2007-06-08
Genre: Mathematics

Concisely written, gentle introduction to graph theory suitable as a textbook or for self-study Graph-theoretic applications from diverse fields (computer science, engineering, chemistry, management science) 2nd ed. includes new chapters on labeling and communications networks and small worlds, as well as expanded beginner's material Many additional changes, improvements, and corrections resulting from classroom use

Local search in combinatorial optimization

Author: J. K. Lenstra
Publisher: John Wiley & Sons
ISBN: 0471948225
Release Date: 1997-06-17
Genre: Mathematics

Wiley-Interscience Series in Discrete Mathematics and Optimization Advisory Editors Ronald L. Graham Jan Karel Lenstra Robert E. Tarjan Discrete Mathematics and Optimization involves the study of finite structures and is one of the fastest growing areas in mathematics today. The level and depth of recent advances in the area and the wide applicability of its evolving techniques point to the rapidity with which the field is moving and presage the ever-increasing interaction between it and computer science. The Series provides a broad coverage of discrete mathematics and optimization, ranging over such fields as combinatorics, graph theory, enumeration, mathematical programming and the analysis of algorithms, and including such topics as Ramsey theory, transversal theory, block designs, finite geometries, Polya theory, graph and matroid algorithms, network flows, polyhedral combinatorics and computational complexity. The Wiley-Interscience Series in Discrete Mathematics and Optimization will be a substantial part of the record in this extraordinary development. Recent title in the Series: Theory and Algorithms for Linear Optimization: An Interior Point Approach C. Roos, T. Terlaky Delft University of Technology, The Netherlands and J.-Ph. Vial University of Geneva, Switzerland Linear Optimization (LO) is one of the most widely taught and fast developing techniques in mathematics, with applications in many areas of science, commerce and industry. The dramatically increased interest in the subject is due mainly to advances in computer technology and to the development of Interior Point Methods (IPM) for LO. This book provides a unified presentation of the field by way of an interior point approach to both the theory of LO and algorithms for LO (design, covergence, complexity and asymptotic behaviour). A common thread throughout the book is the role of strictly complementary solutions, which play a crucial role in the interior point approach and distinguishes the new approach from the classical Simplex-based approach. The approach to LO in this book is new in many aspects. In particular the IPM based development of duality theory is surprisingly elegant. The algorithmic parts of the book contain a complete discussion of many algorithmic variants, including predictor-corrector methods, partial updating, higher order methods and sensitivity and parametric analysis. The comprehensive and up-to-date coverage of the subject, together with the clarity of presentation, ensures that this book will be an invaluable resource for researchers and professionals who wish to develop their understanding of LOs and IPMs . Numerous exercises are provided to help consolidate understanding of the material and more than 45 figures are included to illustrate the characteristics of the algorithms. A general understanding of linear algebra and calculus is assumed and the preliminary chapters provide a self-contained introduction for readers who are unfamiliar with LO methods. These chapters will also be of interest for readers who wish to take a fresh look at the topics. 1997

Discrete Mathematics for Computer Scientists

Author: J. K. Truss
Publisher: Addison Wesley Publishing Company
ISBN: UOM:39015046908334
Release Date: 1999
Genre: Mathematics

This is a new edition of a successful introduction to discrete mathematics for computer scientists, updated and reorganised to be more appropriate for the modern day undergraduate audience. Discrete mathematics forms the theoretical basis for computer science and this text combines a rigorous approach to mathematical concepts with strong motivation of these techniques via practical examples. Key Features Thorough coverage of all area of discrete mathematics, including logic, natural numbers, coding theory, combinatorics, sets, algebraic functions, partially ordered structures, graphs, formal machines & complexity theory Special emphasis on the central role of propositional & predicate logic Full chapters on algorithm analysis & complexity theory Introductory coverage of formal machines & coding theory Over 700 exercises Flexible structure so that the material can be easily adapted for different teaching styles. New to this Edition Improved treatment of induction Coverage of more 'basic' algebra List of symbols including page references for definition/explantion Modern text design and new exercises to aid student comprehension 0201360616B04062001

Finite and Infinite Combinatorics in Sets and Logic

Author: Norbert W Sauer
Publisher: Springer Science & Business Media
ISBN: 9789401120807
Release Date: 2012-12-06
Genre: Mathematics

This volume contains the accounts of papers delivered at the Nato Advanced Study Institute on Finite and Infinite Combinatorics in Sets and Logic held at the Banff Centre, Alberta, Canada from April 21 to May 4, 1991. As the title suggests the meeting brought together workers interested in the interplay between finite and infinite combinatorics, set theory, graph theory and logic. It used to be that infinite set theory, finite combinatorics and logic could be viewed as quite separate and independent subjects. But more and more those disciplines grow together and become interdependent of each other with ever more problems and results appearing which concern all of those disciplines. I appreciate the financial support which was provided by the N. A. T. O. Advanced Study Institute programme, the Natural Sciences and Engineering Research Council of Canada and the Department of Mathematics and Statistics of the University of Calgary. 11l'te meeting on Finite and Infinite Combinatorics in Sets and Logic followed two other meetings on discrete mathematics held in Banff, the Symposium on Ordered Sets in 1981 and the Symposium on Graphs and Order in 1984. The growing inter-relation between the different areas in discrete mathematics is maybe best illustrated by the fact that many of the participants who were present at the previous meetings also attended this meeting on Finite and Infinite Combinatorics in Sets and Logic.