Real Analysis

Author: Miklós Laczkovich
Publisher: Springer
ISBN: 9781493973699
Release Date: 2017-12-14
Genre: Mathematics

This book develops the theory of multivariable analysis, building on the single variable foundations established in the companion volume, Real Analysis: Foundations and Functions of One Variable. Together, these volumes form the first English edition of the popular Hungarian original, Valós Analízis I & II, based on courses taught by the authors at Eötvös Loránd University, Hungary, for more than 30 years. Numerous exercises are included throughout, offering ample opportunities to master topics by progressing from routine to difficult problems. Hints or solutions to many of the more challenging exercises make this book ideal for independent study, or further reading. Intended as a sequel to a course in single variable analysis, this book builds upon and expands these ideas into higher dimensions. The modular organization makes this text adaptable for either a semester or year-long introductory course. Topics include: differentiation and integration of functions of several variables; infinite numerical series; sequences and series of functions; and applications to other areas of mathematics. Many historical notes are given and there is an emphasis on conceptual understanding and context, be it within mathematics itself or more broadly in applications, such as physics. By developing the student’s intuition throughout, many definitions and results become motivated by insights from their context.

A Course in Multivariable Calculus and Analysis

Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
ISBN: 9781441916211
Release Date: 2010-03-20
Genre: Mathematics

This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Several Real Variables

Author: Shmuel Kantorovitz
Publisher: Springer
ISBN: 9783319279565
Release Date: 2016-02-09
Genre: Mathematics

This undergraduate textbook is based on lectures given by the author on the differential and integral calculus of functions of several real variables. The book has a modern approach and includes topics such as: •The p-norms on vector space and their equivalence •The Weierstrass and Stone-Weierstrass approximation theorems •The differential as a linear functional; Jacobians, Hessians, and Taylor's theorem in several variables •The Implicit Function Theorem for a system of equations, proved via Banach’s Fixed Point Theorem •Applications to Ordinary Differential Equations •Line integrals and an introduction to surface integrals This book features numerous examples, detailed proofs, as well as exercises at the end of sections. Many of the exercises have detailed solutions, making the book suitable for self-study. Several Real Variables will be useful for undergraduate students in mathematics who have completed first courses in linear algebra and analysis of one real variable.

Calculus of Several Variables

Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 9781461210689
Release Date: 2012-12-06
Genre: Mathematics

This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.

Real Analysis

Author: Miklós Laczkovich
Publisher: Springer
ISBN: 9781493927661
Release Date: 2015-10-08
Genre: Mathematics

Based on courses given at Eötvös Loránd University (Hungary) over the past 30 years, this introductory textbook develops the central concepts of the analysis of functions of one variable — systematically, with many examples and illustrations, and in a manner that builds upon, and sharpens, the student’s mathematical intuition. The book provides a solid grounding in the basics of logic and proofs, sets, and real numbers, in preparation for a study of the main topics: limits, continuity, rational functions and transcendental functions, differentiation, and integration. Numerous applications to other areas of mathematics, and to physics, are given, thereby demonstrating the practical scope and power of the theoretical concepts treated. In the spirit of learning-by-doing, Real Analysis includes more than 500 engaging exercises for the student keen on mastering the basics of analysis. The wealth of material, and modular organization, of the book make it adaptable as a textbook for courses of various levels; the hints and solutions provided for the more challenging exercises make it ideal for independent study.

Functions of Several Variables

Author: Wendell H Fleming
Publisher: Springer Science & Business Media
ISBN: 9781468494617
Release Date: 2012-12-06
Genre: Mathematics

This new edition, like the first, presents a thorough introduction to differential and integral calculus, including the integration of differential forms on manifolds. However, an additional chapter on elementary topology makes the book more complete as an advanced calculus text, and sections have been added introducing physical applications in thermodynamics, fluid dynamics, and classical rigid body mechanics.

Mathematical Analysis

Author: Mariano Giaquinta
Publisher: Springer Science & Business Media
ISBN: 9781461200079
Release Date: 2012-12-06
Genre: Mathematics

For more than two thousand years some familiarity with mathematics has been regarded as an indispensable part of the intellectual equipment of every cultured person. Today the traditional place of mathematics in education is in grave danger. Unfortunately, professional representatives of mathematics share in the reponsibiIity. The teaching of mathematics has sometimes degen erated into empty drill in problem solving, which may develop formal ability but does not lead to real understanding or to greater intellectual indepen dence. Mathematical research has shown a tendency toward overspecialization and over-emphasis on abstraction. Applications and connections with other fields have been neglected . . . But . . . understanding of mathematics cannot be transmitted by painless entertainment any more than education in music can be brought by the most brilliant journalism to those who never have lis tened intensively. Actual contact with the content of living mathematics is necessary. Nevertheless technicalities and detours should be avoided, and the presentation of mathematics should be just as free from emphasis on routine as from forbidding dogmatism which refuses to disclose motive or goal and which is an unfair obstacle to honest effort. (From the preface to the first edition of What is Mathematics? by Richard Courant and Herbert Robbins, 1941.

Mathematical Analysis

Author: Andrew Browder
Publisher: Springer Science & Business Media
ISBN: 9781461207153
Release Date: 2012-12-06
Genre: Mathematics

Among the traditional purposes of such an introductory course is the training of a student in the conventions of pure mathematics: acquiring a feeling for what is considered a proof, and supplying literate written arguments to support mathematical propositions. To this extent, more than one proof is included for a theorem - where this is considered beneficial - so as to stimulate the students' reasoning for alternate approaches and ideas. The second half of this book, and consequently the second semester, covers differentiation and integration, as well as the connection between these concepts, as displayed in the general theorem of Stokes. Also included are some beautiful applications of this theory, such as Brouwer's fixed point theorem, and the Dirichlet principle for harmonic functions. Throughout, reference is made to earlier sections, so as to reinforce the main ideas by repetition. Unique in its applications to some topics not usually covered at this level.

Elementary Analysis

Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 9781461462712
Release Date: 2013-04-16
Genre: Mathematics

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

An Introduction to Multivariable Analysis from Vector to Manifold

Author: Piotr Mikusinski
Publisher: Springer Science & Business Media
ISBN: 9781461200734
Release Date: 2012-12-06
Genre: Mathematics

Multivariable analysis is of interest to pure and applied mathematicians, physicists, electrical, mechanical and systems engineers, mathematical economists, biologists, and statisticians. This book takes the student and researcher on a journey through the core topics of the subject. Systematic exposition, with numerous examples and exercises from the computational to the theoretical, makes difficult ideas as concrete as possible. Good bibliography and index.

Theory of Functions of a Real Variable

Author: I.P. Natanson
Publisher: Courier Dover Publications
ISBN: 9780486806433
Release Date: 2016-08-17
Genre: Mathematics

Long out-of-print volume by a prominent Soviet mathematician presents a thorough examination of the theory of functions of a real variable. Intended for advanced undergraduates and graduate students of mathematics. 1955 and 1960 editions.

A Course in Calculus and Real Analysis

Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
ISBN: 9780387364254
Release Date: 2006-10-14
Genre: Mathematics

This book provides a self-contained and rigorous introduction to calculus of functions of one variable, in a presentation which emphasizes the structural development of calculus. Throughout, the authors highlight the fact that calculus provides a firm foundation to concepts and results that are generally encountered in high school and accepted on faith; for example, the classical result that the ratio of circumference to diameter is the same for all circles. A number of topics are treated here in considerable detail that may be inadequately covered in calculus courses and glossed over in real analysis courses.

Derivatives and Integrals of Multivariable Functions

Author: Alberto Guzman
Publisher: Springer Science & Business Media
ISBN: 9781461200352
Release Date: 2012-12-06
Genre: Mathematics

This work provides a systematic examination of derivatives and integrals of multivariable functions. The approach taken here is similar to that of the author’s previous text, "Continuous Functions of Vector Variables": specifically, elementary results from single-variable calculus are extended to functions in several-variable Euclidean space. Topics encompass differentiability, partial derivatives, directional derivatives and the gradient; curves, surfaces, and vector fields; the inverse and implicit function theorems; integrability and properties of integrals; and the theorems of Fubini, Stokes, and Gauss. Prerequisites include background in linear algebra, one-variable calculus, and some acquaintance with continuous functions and the topology of the real line. Written in a definition-theorem-proof format, the book is replete with historical comments, questions, and discussions about strategy, difficulties, and alternate paths. "Derivatives and Integrals of Multivariable Functions" is a rigorous introduction to multivariable calculus that will help students build a foundation for further explorations in analysis and differential geometry.

Advanced Calculus

Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9789814583954
Release Date: 2014-02-26
Genre: Mathematics

An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades. This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis. The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives. In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.

Introduction to Real Analysis

Author: William F. Trench
Publisher: Prentice Hall
ISBN: 0130457868
Release Date: 2003
Genre: Mathematics

Using an extremely clear and informal approach, this book introduces readers to a rigorous understanding of mathematical analysis and presents challenging math concepts as clearly as possible. The real number system. Differential calculus of functions of one variable. Riemann integral functions of one variable. Integral calculus of real-valued functions. Metric Spaces. For those who want to gain an understanding of mathematical analysis and challenging mathematical concepts.