Real and Abstract Analysis

Author: Edwin Hewitt
Publisher: Springer
ISBN: 9780387901381
Release Date: 1975-07-09
Genre: Mathematics

This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in ToM M. APOSTOL's Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], orWALTERRUDIN's Principles of Mathe matical Analysis [2nd Ed., McGraw-Hill Book Co., New York, 1964].

Theory of Functions of a Real Variable

Author: I.P. Natanson
Publisher: Courier Dover Publications
ISBN: 9780486806433
Release Date: 2016-08-17
Genre: Mathematics

Long out-of-print volume by a prominent Soviet mathematician presents a thorough examination of the theory of functions of a real variable. Intended for advanced undergraduates and graduate students of mathematics. 1955 and 1960 editions.

Complex Analysis and Dynamical Systems V

Author: Mark Lʹvovich Agranovskiĭ
Publisher: American Mathematical Soc.
ISBN: 9780821890240
Release Date: 2013-06-03
Genre: Mathematics

This volume contains the proceedings of the Fifth International Conference on Complex Analysis and Dynamical Systems, held from May 22-27, 2011, in Akko (Acre), Israel. The papers cover a wide variety of topics in complex analysis and partial differential

Numerical Analysis

Author: Walter Gautschi
Publisher: Springer Science & Business Media
ISBN: 0817638954
Release Date: 1997-08-19
Genre: Mathematics

'The book reads like an unfolding story... Topics are motivated with great care and ingenuity that might be given to establishing the drive behind characters in a good novel... Clarity is never sacrificed for elegance. Above all, the pace is always lively

Lie Superalgebras and Enveloping Algebras

Author: Ian Malcolm Musson
Publisher: American Mathematical Soc.
ISBN: 9780821868676
Release Date: 2012-04-04
Genre: Mathematics

Lie superalgebras are a natural generalization of Lie algebras, having applications in geometry, number theory, gauge field theory, and string theory. This book develops the theory of Lie superalgebras, their enveloping algebras, and their representations. The book begins with five chapters on the basic properties of Lie superalgebras, including explicit constructions for all the classical simple Lie superalgebras. Borel subalgebras, which are more subtle in this setting, are studied and described. Contragredient Lie superalgebras are introduced, allowing a unified approach to several results, in particular to the existence of an invariant bilinear form on $\mathfrak{g}$. The enveloping algebra of a finite dimensional Lie superalgebra is studied as an extension of the enveloping algebra of the even part of the superalgebra. By developing general methods for studying such extensions, important information on the algebraic structure is obtained, particularly with regard to primitive ideals. Fundamental results, such as the Poincare-Birkhoff-Witt Theorem, are established. Representations of Lie superalgebras provide valuable tools for understanding the algebras themselves, as well as being of primary interest in applications to other fields. Two important classes of representations are the Verma modules and the finite dimensional representations. The fundamental results here include the Jantzen filtration, the Harish-Chandra homomorphism, the Sapovalov determinant, supersymmetric polynomials, and Schur-Weyl duality. Using these tools, the center can be explicitly described in the general linear and orthosymplectic cases. In an effort to make the presentation as self-contained as possible, some background material is included on Lie theory, ring theory, Hopf algebras, and combinatorics.

Theory of Nonparametric Tests

Author: Thorsten Dickhaus
Publisher: Springer
ISBN: 9783319763156
Release Date: 2018-03-27
Genre: Mathematics

This textbook provides a self-contained presentation of the main concepts and methods of nonparametric statistical testing, with a particular focus on the theoretical foundations of goodness-of-fit tests, rank tests, resampling tests, and projection tests. The substitution principle is employed as a unified approach to the nonparametric test problems discussed. In addition to mathematical theory, it also includes numerous examples and computer implementations. The book is intended for advanced undergraduate, graduate, and postdoc students as well as young researchers. Readers should be familiar with the basic concepts of mathematical statistics typically covered in introductory statistics courses.

Functions of One Complex Variable

Author: J.B. Conway
Publisher: Springer Science & Business Media
ISBN: 9781461599722
Release Date: 2012-12-06
Genre: Mathematics

This book is intended as a textbook for a first course in the theory of functions of one complex variable for students who are mathematically mature enough to understand and execute E - I) arguments. The actual pre requisites for reading this book are quite minimal; not much more than a stiff course in basic calculus and a few facts about partial derivatives. The topics from advanced calculus that are used (e.g., Leibniz's rule for differ entiating under the integral sign) are proved in detail. Complex Variables is a subject which has something for all mathematicians. In addition to having applications to other parts of analysis, it can rightly claim to be an ancestor of many areas of mathematics (e.g., homotopy theory, manifolds). This view of Complex Analysis as "An Introduction to Mathe matics" has influenced the writing and selection of subject matter for this book. The other guiding principle followed is that all definitions, theorems, etc.

Measure and Integral

Author: Richard L. Wheeden
Publisher: CRC Press
ISBN: 9781498702904
Release Date: 2015-04-24
Genre: Mathematics

Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 p Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hölder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincaré–Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.

Real Variables with Basic Metric Space Topology

Author: Robert B. Ash
Publisher: Courier Corporation
ISBN: 9780486151496
Release Date: 2014-07-28
Genre: Mathematics

Designed for a first course in real variables, this text encourages intuitive thinking and features detailed solutions to problems. Topics include complex variables, measure theory, differential equations, functional analysis, probability. 1993 edition.

A Course in Operator Theory

Author: John B. Conway
Publisher: American Mathematical Soc.
ISBN: 9780821820650
Release Date: 2000
Genre: Mathematics

A new volume in the marquee series of the AMS, featuring broad mathematical topics written by some of the best and brightest that the mathematics field has to offer. All titles have attractive hardcovers and market-oriented prices.

Elementary Analysis

Author: Kenneth A. Ross
Publisher: Springer Science & Business Media
ISBN: 9781461462712
Release Date: 2013-04-16
Genre: Mathematics

For over three decades, this best-selling classic has been used by thousands of students in the United States and abroad as a must-have textbook for a transitional course from calculus to analysis. It has proven to be very useful for mathematics majors who have no previous experience with rigorous proofs. Its friendly style unlocks the mystery of writing proofs, while carefully examining the theoretical basis for calculus. Proofs are given in full, and the large number of well-chosen examples and exercises range from routine to challenging. The second edition preserves the book’s clear and concise style, illuminating discussions, and simple, well-motivated proofs. New topics include material on the irrationality of pi, the Baire category theorem, Newton's method and the secant method, and continuous nowhere-differentiable functions.

Monographic Series

Author: Library of Congress
Publisher:
ISBN: UIUC:30112024897404
Release Date: 1975
Genre: Children's literature in series


Modern Real Analysis

Author: William P. Ziemer
Publisher: Springer
ISBN: 9783319646299
Release Date: 2017-11-30
Genre: Mathematics

This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.

Complex Made Simple

Author: David C. Ullrich
Publisher: American Mathematical Soc.
ISBN: 9780821844793
Release Date: 2008
Genre: Mathematics

Perhaps uniquely among mathematical topics, complex analysis presents the student with the opportunity to learn a thoroughly developed subject that is rich in both theory and applications. Even in an introductory course, the theorems and techniques can have elegant formulations. But for any of these profound results, the student is often left asking: What does it really mean? Where does it come from? In Complex Made Simple, David Ullrich shows the student how to think like an analyst. In many cases, results are discovered or derived, with an explanation of how the students might have found the theorem on their own. Ullrich explains why a proof works. He will also, sometimes, explain why a tempting idea does not work. Complex Made Simple looks at the Dirichlet problem for harmonic functions twice: once using the Poisson integral for the unit disk and again in an informal section on Brownian motion, where the reader can understand intuitively how the Dirichlet problem works for general domains.Ullrich also takes considerable care to discuss the modular group, modular function, and covering maps, which become important ingredients in his modern treatment of the often-overlooked original proof of the Big Picard Theorem. This book is suitable for a first-year course in complex analysis. The exposition is aimed directly at the students, with plenty of details included. The prerequisite is a good course in advanced calculus or undergraduate analysis.