Real Time Analytics

Author: Byron Ellis
Publisher: John Wiley & Sons
ISBN: 9781118838020
Release Date: 2014-06-23
Genre: Computers

Construct a robust end-to-end solution for analyzing and visualizing streaming data Real-time analytics is the hottest topic in data analytics today. In Real-Time Analytics: Techniques to Analyze and Visualize Streaming Data, expert Byron Ellis teaches data analysts technologies to build an effective real-time analytics platform. This platform can then be used to make sense of the constantly changing data that is beginning to outpace traditional batch-based analysis platforms. The author is among a very few leading experts in the field. He has a prestigious background in research, development, analytics, real-time visualization, and Big Data streaming and is uniquely qualified to help you explore this revolutionary field. Moving from a description of the overall analytic architecture of real-time analytics to using specific tools to obtain targeted results, Real-Time Analytics leverages open source and modern commercial tools to construct robust, efficient systems that can provide real-time analysis in a cost-effective manner. The book includes: A deep discussion of streaming data systems and architectures Instructions for analyzing, storing, and delivering streaming data Tips on aggregating data and working with sets Information on data warehousing options and techniques Real-Time Analytics includes in-depth case studies for website analytics, Big Data, visualizing streaming and mobile data, and mining and visualizing operational data flows. The book's "recipe" layout lets readers quickly learn and implement different techniques. All of the code examples presented in the book, along with their related data sets, are available on the companion website.

Contemporary Research Methods and Data Analytics in the News Industry

Author: Gibbs, William J.
Publisher: IGI Global
ISBN: 9781466685819
Release Date: 2015-07-01
Genre: Language Arts & Disciplines

The advent of digital technologies has changed the news and publishing industries drastically. While shrinking newsrooms may be a concern for many, journalists and publishing professionals are working to reorient their skills and capabilities to employ technology for the purpose of better understanding and engaging with their audiences. Contemporary Research Methods and Data Analytics in the News Industry highlights the research behind the innovations and emerging practices being implemented within the journalism industry. This crucial, industry-shattering publication focuses on key topics in social media and video streaming as a new form of media communication as well the application of big data and data analytics for collecting information and drawing conclusions about the current and future state of print and digital news. Due to significant insight surrounding the latest applications and technologies affecting the news industry, this publication is a must-have resource for journalists, analysts, news media professionals, social media strategists, researchers, television news producers, and upper-level students in journalism and media studies. This timely industry resource includes key topics on the changing scope of the news and publishing industries including, but not limited to, big data, broadcast journalism, computational journalism, computer-mediated communication, data scraping, digital media, news media, social media, text mining, and user experience.

Analytics and Data Science

Author: Amit V. Deokar
Publisher: Springer
ISBN: 9783319580975
Release Date: 2017-10-05
Genre: Computers

This book explores emerging research and pedagogy in analytics and data science that have become core to many businesses as they work to derive value from data. The chapters examine the role of analytics and data science to create, spread, develop and utilize analytics applications for practice. Selected chapters provide a good balance between discussing research advances and pedagogical tools in key topic areas in analytics and data science in a systematic manner. This book also focuses on several business applications of these emerging technologies in decision making, i.e., business analytics. The chapters in Analytics and Data Science: Advances in Research and Pedagogy are written by leading academics and practitioners that participated at the Business Analytics Congress 2015. Applications of analytics and data science technologies in various domains are still evolving. For instance, the explosive growth in big data and social media analytics requires examination of the impact of these technologies and applications on business and society. As organizations in various sectors formulate their IT strategies and investments, it is imperative to understand how various analytics and data science approaches contribute to the improvements in organizational information processing and decision making. Recent advances in computational capacities coupled by improvements in areas such as data warehousing, big data, analytics, semantics, predictive and descriptive analytics, visualization, and real-time analytics have particularly strong implications on the growth of analytics and data science.

Big Data in Healthcare

Author: Pouria Amirian
Publisher: Springer
ISBN: 9783319629902
Release Date: 2017-09-18
Genre: Medical

This book reviews a number of issues including: Why data generated from POC machines are considered as Big Data. What are the challenges in storing, managing, extracting knowledge from data from POC devices? Why is it inefficient to use traditional data analysis with big data? What are the solutions for the mentioned issues and challenges? What type of analytics skills are required in health care? What big data technologies and tools can be used efficiently with data generated from POC devices? This book shows how it is feasible to store vast numbers of anonymous data and ask highly specific questions that can be performed in real-time to give precise and meaningful evidence to guide public health policy.

Big Data

Author: Rajkumar Buyya
Publisher: Morgan Kaufmann
ISBN: 9780128093467
Release Date: 2016-06-07
Genre: Computers

Big Data: Principles and Paradigms captures the state-of-the-art research on the architectural aspects, technologies, and applications of Big Data. The book identifies potential future directions and technologies that facilitate insight into numerous scientific, business, and consumer applications. To help realize Big Data’s full potential, the book addresses numerous challenges, offering the conceptual and technological solutions for tackling them. These challenges include life-cycle data management, large-scale storage, flexible processing infrastructure, data modeling, scalable machine learning, data analysis algorithms, sampling techniques, and privacy and ethical issues. Covers computational platforms supporting Big Data applications Addresses key principles underlying Big Data computing Examines key developments supporting next generation Big Data platforms Explores the challenges in Big Data computing and ways to overcome them Contains expert contributors from both academia and industry

Intelligent Techniques for Data Science

Author: Rajendra Akerkar
Publisher: Springer
ISBN: 9783319292069
Release Date: 2016-10-11
Genre: Computers

This textbook provides readers with the tools, techniques and cases required to excel with modern artificial intelligence methods. These embrace the family of neural networks, fuzzy systems and evolutionary computing in addition to other fields within machine learning, and will help in identifying, visualizing, classifying and analyzing data to support business decisions./p> The authors, discuss advantages and drawbacks of different approaches, and present a sound foundation for the reader to design and implement data analytic solutions for real‐world applications in an intelligent manner. Intelligent Techniques for Data Science also provides real-world cases of extracting value from data in various domains such as retail, health, aviation, telecommunication and tourism.

The Second Machine Age

Author: Andrew Mcafee
Publisher: Plassen Verlag
ISBN: 9783864702228
Release Date: 2014-10-01
Genre: Business & Economics

Computer sind mittlerweile so intelligent geworden, dass die nächste industrielle Revolution unmittelbar bevorsteht. Wer profitiert, wer verliert? Antworten auf diese Fragen bietet das neue Buch der Technologie-Profis Erik Brynjolfsson und Andrew McAfee. Seit Jahren arbeiten wir mit Computern - und Computer für uns. Mittlerweile sind die Maschinen so intelligent geworden, dass sie zu Leistungen fähig sind, die vor Kurzem noch undenkbar waren: Sie fahren Auto, sie schreiben eigene Texte - und sie besiegen Großmeister im Schach. Dieser Entwicklungssprung ist nur der Anfang. In ihrem neuen Buch zeigen zwei renommierte Professoren, welch atemberaubende Entwicklungen uns noch bevorstehen: Die zweite industrielle Revolution kommt! Welche Auswirkungen wird das haben? Welche Chancen winken, welche Risiken drohen? Was geschieht dabei mit den Menschen, was mit der Umwelt? Und was werden Gesellschaft und Politik tun, um die Auswirkungen dieser "neuen digitalen Intelligenz" für alle bestmöglich zu gestalten? Dieses Buch nimmt Sie mit auf eine Reise in eine Zukunft, die schon längst begonnen hat.

Big Data Imperatives

Author: Soumendra Mohanty
Publisher: Apress
ISBN: 9781430248729
Release Date: 2013-06-24
Genre: Computers

Big Data Imperatives, focuses on resolving the key questions on everyone's mind: Which data matters? Do you have enough data volume to justify the usage? How you want to process this amount of data? How long do you really need to keep it active for your analysis, marketing, and BI applications? Big data is emerging from the realm of one-off projects to mainstream business adoption; however, the real value of big data is not in the overwhelming size of it, but more in its effective use. Big Data Imperatives describes the complementary nature of traditional data warehouses and big-data analytics platforms and how they feed each other. This book aims to bring the big data and analytics realms together with a greater focus on architectures that leverage the scale and power of big data and the ability to integrate and apply analytics principles to data which earlier was not accessible. This book can also be used as a handbook for practitioners; helping them on methodology,technical architecture, analytics techniques and best practices. At the same time, this book intends to hold the interest of those new to big data and analytics by giving them a deep insight into the realm of big data.

Big Data Analytics

Author: Venkat Ankam
Publisher: Packt Publishing Ltd
ISBN: 9781785889707
Release Date: 2016-09-28
Genre: Computers

A handy reference guide for data analysts and data scientists to help to obtain value from big data analytics using Spark on Hadoop clusters About This Book This book is based on the latest 2.0 version of Apache Spark and 2.7 version of Hadoop integrated with most commonly used tools. Learn all Spark stack components including latest topics such as DataFrames, DataSets, GraphFrames, Structured Streaming, DataFrame based ML Pipelines and SparkR. Integrations with frameworks such as HDFS, YARN and tools such as Jupyter, Zeppelin, NiFi, Mahout, HBase Spark Connector, GraphFrames, H2O and Hivemall. Who This Book Is For Though this book is primarily aimed at data analysts and data scientists, it will also help architects, programmers, and practitioners. Knowledge of either Spark or Hadoop would be beneficial. It is assumed that you have basic programming background in Scala, Python, SQL, or R programming with basic Linux experience. Working experience within big data environments is not mandatory. What You Will Learn Find out and implement the tools and techniques of big data analytics using Spark on Hadoop clusters with wide variety of tools used with Spark and Hadoop Understand all the Hadoop and Spark ecosystem components Get to know all the Spark components: Spark Core, Spark SQL, DataFrames, DataSets, Conventional and Structured Streaming, MLLib, ML Pipelines and Graphx See batch and real-time data analytics using Spark Core, Spark SQL, and Conventional and Structured Streaming Get to grips with data science and machine learning using MLLib, ML Pipelines, H2O, Hivemall, Graphx, SparkR and Hivemall. In Detail Big Data Analytics book aims at providing the fundamentals of Apache Spark and Hadoop. All Spark components – Spark Core, Spark SQL, DataFrames, Data sets, Conventional Streaming, Structured Streaming, MLlib, Graphx and Hadoop core components – HDFS, MapReduce and Yarn are explored in greater depth with implementation examples on Spark + Hadoop clusters. It is moving away from MapReduce to Spark. So, advantages of Spark over MapReduce are explained at great depth to reap benefits of in-memory speeds. DataFrames API, Data Sources API and new Data set API are explained for building Big Data analytical applications. Real-time data analytics using Spark Streaming with Apache Kafka and HBase is covered to help building streaming applications. New Structured streaming concept is explained with an IOT (Internet of Things) use case. Machine learning techniques are covered using MLLib, ML Pipelines and SparkR and Graph Analytics are covered with GraphX and GraphFrames components of Spark. Readers will also get an opportunity to get started with web based notebooks such as Jupyter, Apache Zeppelin and data flow tool Apache NiFi to analyze and visualize data. Style and approach This step-by-step pragmatic guide will make life easy no matter what your level of experience. You will deep dive into Apache Spark on Hadoop clusters through ample exciting real-life examples. Practical tutorial explains data science in simple terms to help programmers and data analysts get started with Data Science

big data work

Author: Thomas H. Davenport
Publisher:
ISBN: 3800648148
Release Date: 2014-09
Genre:

Big Data in Unternehmen.Dieses neue Buchgibt Managern ein umfassendes Verständnis dafür, welche Bedeutung Big Data für Unternehmen zukünftig haben wird und wie Big Data tatsächlich genutzt werden kann. Am Ende jedes Kapitels aktivieren Fragen, selbst nach Lösungen für eine erfolgreiche Implementierung und Nutzung von Big Data im eigenen Unternehmen zu suchen.Die Schwerpunkte- Warum Big Data für Sie und Ihr Unternehmen wichtig ist- Wie Big Data Ihre Arbeit, Ihr Unternehmen und Ihre Branche verändern - - wird- Entwicklung einer Big Data-Strategie- Der menschliche Aspekt von Big Data- Technologie...

Der Schwarze Schwan

Author: Nassim Nicholas Taleb
Publisher: Albrecht Knaus Verlag
ISBN: 9783641171933
Release Date: 2015-11-02
Genre: Social Science

Talebs Weltbestseller endlich wieder im Handel erhältlich. „Der Schwarze Schwan: Die Macht höchst unwahrscheinlicher Ereignisse“ und „Der Schwarze Schwan: Konsequenzen aus der Krise“ erstmals komplett in einem Band und eingeleitet mit einem neuen Essay des Autors. Nassim Nicholas Talebs Definition ist weltberühmt geworden: Ein “Schwarzer Schwan” ist ein Ereignis, auf das drei Dinge zutreffen: Es ist erstens ein Ausreißer – es liegt außerhalb der regulären Erwartungen, nichts in der Vergangenheit weist darauf hin. Es hat zweitens enorme Auswirkungen. Drittens bringt uns die menschliche Natur dazu, im Nachhinein Erklärungen für sein Eintreten zu konstruieren, um es erklärbar und vorhersagbar zu machen. In diesem bahnbrechenden Buch, das mittlerweile weltweit zum Klassiker geworden ist, entwickelt Taleb seine einflussreiche Denkfigur und Maxime für die ungewisse Realität, in der wir leben und handeln.

High Performance Big Data Analytics

Author: Pethuru Raj
Publisher: Springer
ISBN: 9783319207445
Release Date: 2015-10-16
Genre: Computers

This book presents a detailed review of high-performance computing infrastructures for next-generation big data and fast data analytics. Features: includes case studies and learning activities throughout the book and self-study exercises in every chapter; presents detailed case studies on social media analytics for intelligent businesses and on big data analytics (BDA) in the healthcare sector; describes the network infrastructure requirements for effective transfer of big data, and the storage infrastructure requirements of applications which generate big data; examines real-time analytics solutions; introduces in-database processing and in-memory analytics techniques for data mining; discusses the use of mainframes for handling real-time big data and the latest types of data management systems for BDA; provides information on the use of cluster, grid and cloud computing systems for BDA; reviews the peer-to-peer techniques and tools and the common information visualization techniques, used in BDA.