Ricci Flow and the Sphere Theorem

Author: Simon Brendle
Publisher: American Mathematical Soc.
ISBN: 9780821849385
Release Date: 2010
Genre: Mathematics

In 1982, R. Hamilton introduced a nonlinear evolution equation for Riemannian metrics with the aim of finding canonical metrics on manifolds. This evolution equation is known as the Ricci flow, and it has since been used widely and with great success, most notably in Perelman's solution of the Poincare conjecture. Furthermore, various convergence theorems have been established. This book provides a concise introduction to the subject as well as a comprehensive account of the convergence theory for the Ricci flow. The proofs rely mostly on maximum principle arguments. Special emphasis is placed on preserved curvature conditions, such as positive isotropic curvature. One of the major consequences of this theory is the Differentiable Sphere Theorem: a compact Riemannian manifold, whose sectional curvatures all lie in the interval (1,4], is diffeomorphic to a spherical space form. This question has a long history, dating back to a seminal paper by H. E. Rauch in 1951, and it was resolved in 2007 by the author and Richard Schoen. This text originated from graduate courses given at ETH Zurich and Stanford University, and it is directed at graduate students and researchers. The reader is assumed to be familiar with basic Riemannian geometry, but no previous knowledge of Ricci flow is required.

The Ricci Flow in Riemannian Geometry

Author: Ben Andrews
Publisher: Springer Science & Business Media
ISBN: 9783642162855
Release Date: 2010-11-25
Genre: Mathematics

Focusing on Hamilton's Ricci flow, this volume begins with a detailed discussion of the required aspects of differential geometry. The discussion also includes existence and regularity theory, compactness theorems for Riemannian manifolds, and much more.

Fifth International Congress of Chinese Mathematicians

Author: Lizhen Ji
Publisher: American Mathematical Soc.
ISBN: 9780821875865
Release Date: 2012
Genre: Mathematics

This two-part volume represents the proceedings of the Fifth International Congress of Chinese Mathematicians, held at Tsinghua University, Beijing, in December 2010. The Congress brought together eminent Chinese and overseas mathematicians to discuss the latest developments in pure and applied mathematics. Included are 60 papers based on lectures given at the conference.

Proceedings of the International Congress of Mathematicians

Author: Rajendra Bhatia
Publisher: World Scientific
ISBN: 9789814324359
Release Date: 2010
Genre: Electronic books

ICM 2010 proceedings comprise a four-volume set containing articles based on plenary lectures and invited section lectures, the Abel and Noether lectures, as well as contributions based on lectures delivered by the recipients of the Fields Medal, the Nevanlinna, and Chern Prizes. The first volume will also contain the speeches at the opening and closing ceremonies and other highlights of the Congress.

Topics in Extrinsic Geometry of Codimension One Foliations

Author: Vladimir Rovenski
Publisher: Springer Science & Business Media
ISBN: 1441999086
Release Date: 2011-07-26
Genre: Mathematics

Extrinsic geometry describes properties of foliations on Riemannian manifolds which can be expressed in terms of the second fundamental form of the leaves. The authors of Topics in Extrinsic Geometry of Codimension-One Foliations achieve a technical tour de force, which will lead to important geometric results. The Integral Formulae, introduced in chapter 1, is a useful for problems such as: prescribing higher mean curvatures of foliations, minimizing volume and energy defined for vector or plane fields on manifolds, and existence of foliations whose leaves enjoy given geometric properties. The Integral Formulae steams from a Reeb formula, for foliations on space forms which generalize the classical ones. For a special auxiliary functions the formulae involve the Newton transformations of the Weingarten operator. The central topic of this book is Extrinsic Geometric Flow (EGF) on foliated manifolds, which may be a tool for prescribing extrinsic geometric properties of foliations. To develop EGF, one needs Variational Formulae, revealed in chapter 2, which expresses a change in different extrinsic geometric quantities of a fixed foliation under leaf-wise variation of the Riemannian Structure of the ambient manifold. Chapter 3 defines a general notion of EGF and studies the evolution of Riemannian metrics along the trajectories of this flow(e.g., describes the short-time existence and uniqueness theory and estimate the maximal existence time).Some special solutions (called Extrinsic Geometric Solutions) of EGF are presented and are of great interest, since they provide Riemannian Structures with very particular geometry of the leaves. This work is aimed at those who have an interest in the differential geometry of submanifolds and foliations of Riemannian manifolds.

Ricci Flow and the Poincar Conjecture

Author: John W. Morgan
Publisher: American Mathematical Soc.
ISBN: 0821843281
Release Date: 2007
Genre: Mathematics

For over 100 years the Poincare Conjecture, which proposes a topological characterization of the 3-sphere, has been the central question in topology. Since its formulation, it has been repeatedly attacked, without success, using various topological methods. Its importance and difficulty were highlighted when it was chosen as one of the Clay Mathematics Institute's seven Millennium Prize Problems. In 2002 and 2003 Grigory Perelman posted three preprints showing how to use geometric arguments, in particular the Ricci flow as introduced and studied by Hamilton, to establish the Poincare Conjecture in the affirmative. This book provides full details of a complete proof of the Poincare Conjecture following Perelman's three preprints. After a lengthy introduction that outlines the entire argument, the book is divided into four parts. The first part reviews necessary results from Riemannian geometry and Ricci flow, including much of Hamilton's work. The second part starts with Perelman's length function, which is used to establish crucial non-collapsing theorems. Then it discusses the classification of non-collapsed, ancient solutions to the Ricci flow equation. The third part concerns the existence of Ricci flow with surgery for all positive time and an analysis of the topological and geometric changes introduced by surgery. The last part follows Perelman's third preprint to prove that when the initial Riemannian 3-manifold has finite fundamental group, Ricci flow with surgery becomes extinct after finite time. The proofs of the Poincare Conjecture and the closely related 3-dimensional spherical space-form conjecture are then immediate. The existence of Ricci flow with surgery has application to 3-manifolds far beyond the Poincare Conjecture. It forms the heart of the proof via Ricci flow of Thurston's Geometrization Conjecture. Thurston's Geometrization Conjecture, which classifies all compact 3-manifolds, will be the subject of a follow-up article. The organization of the material in this book differs from that given by Perelman. From the beginning the authors present all analytic and geometric arguments in the context of Ricci flow with surgery. In addition, the fourth part is a much-expanded version of Perelman's third preprint; it gives the first complete and detailed proof of the finite-time extinction theorem. With the large amount of background material that is presented and the detailed versions of the central arguments, this book is suitable for all mathematicians from advanced graduate students to specialists in geometry and topology. Clay Mathematics Institute Monograph Series The Clay Mathematics Institute Monograph Series publishes selected expositions of recent developments, both in emerging areas and in older subjects transformed by new insights or unifying ideas.

Ricci Flow for Shape Analysis and Surface Registration

Author: Wei Zeng
Publisher: Springer Science & Business Media
ISBN: 9781461487814
Release Date: 2013-10-18
Genre: Mathematics

​​Ricci Flow for Shape Analysis and Surface Registration introduces the beautiful and profound Ricci flow theory in a discrete setting. By using basic tools in linear algebra and multivariate calculus, readers can deduce all the major theorems in surface​ Ricci flow by themselves. The authors adapt the Ricci flow theory to practical computational algorithms, apply Ricci flow for shape analysis and surface registration, and demonstrate the power of Ricci flow in many applications in medical imaging, computer graphics, computer vision and wireless sensor network. Due to minimal pre-requisites, this book is accessible to engineers and medical experts, including educators, researchers, students and industry engineers who have an interest in solving real problems related to shape analysis and surface registration.

Lecture Notes on Functional Analysis

Author: Alberto Bressan
Publisher: American Mathematical Soc.
ISBN: 9780821887714
Release Date: 2013
Genre: Mathematics

This textbook is addressed to graduate students in mathematics or other disciplines who wish to understand the essential concepts of functional analysis and their applications to partial differential equations. The book is intentionally concise, presenting all the fundamental concepts and results but omitting the more specialized topics. Enough of the theory of Sobolev spaces and semigroups of linear operators is included as needed to develop significant applications to elliptic, parabolic, and hyperbolic PDEs. Throughout the book, care has been taken to explain the connections between theorems in functional analysis and familiar results of finite-dimensional linear algebra. The main concepts and ideas used in the proofs are illustrated with a large number of figures. A rich collection of homework problems is included at the end of most chapters. The book is suitable as a text for a one-semester graduate course.

Differentialgeometrie Topologie und Physik

Author: Mikio Nakahara
Publisher: Springer-Verlag
ISBN: 9783662453001
Release Date: 2015-02-23
Genre: Science

Differentialgeometrie und Topologie sind wichtige Werkzeuge für die Theoretische Physik. Insbesondere finden sie Anwendung in den Gebieten der Astrophysik, der Teilchen- und Festkörperphysik. Das vorliegende beliebte Buch, das nun erstmals ins Deutsche übersetzt wurde, ist eine ideale Einführung für Masterstudenten und Forscher im Bereich der theoretischen und mathematischen Physik. - Im ersten Kapitel bietet das Buch einen Überblick über die Pfadintegralmethode und Eichtheorien. - Kapitel 2 beschäftigt sich mit den mathematischen Grundlagen von Abbildungen, Vektorräumen und der Topologie. - Die folgenden Kapitel beschäftigen sich mit fortgeschritteneren Konzepten der Geometrie und Topologie und diskutieren auch deren Anwendungen im Bereich der Flüssigkristalle, bei suprafluidem Helium, in der ART und der bosonischen Stringtheorie. - Daran anschließend findet eine Zusammenführung von Geometrie und Topologie statt: es geht um Faserbündel, characteristische Klassen und Indextheoreme (u.a. in Anwendung auf die supersymmetrische Quantenmechanik). - Die letzten beiden Kapitel widmen sich der spannendsten Anwendung von Geometrie und Topologie in der modernen Physik, nämlich den Eichfeldtheorien und der Analyse der Polakov'schen bosonischen Stringtheorie aus einer gemetrischen Perspektive. Mikio Nakahara studierte an der Universität Kyoto und am King’s in London Physik sowie klassische und Quantengravitationstheorie. Heute ist er Physikprofessor an der Kinki-Universität in Osaka (Japan), wo er u. a. über topologische Quantencomputer forscht. Diese Buch entstand aus einer Vorlesung, die er während Forschungsaufenthalten an der University of Sussex und an der Helsinki University of Sussex gehalten hat.

Geometric Analysis

Author: Hubert L. Bray
Publisher: American Mathematical Soc.
ISBN: 9781470423131
Release Date: 2016-05-18
Genre: Geometric analysis

This volume includes expanded versions of the lectures delivered in the Graduate Minicourse portion of the 2013 Park City Mathematics Institute session on Geometric Analysis. The papers give excellent high-level introductions, suitable for graduate students wishing to enter the field and experienced researchers alike, to a range of the most important areas of geometric analysis. These include: the general issue of geometric evolution, with more detailed lectures on Ricci flow and Kähler-Ricci flow, new progress on the analytic aspects of the Willmore equation as well as an introduction to the recent proof of the Willmore conjecture and new directions in min-max theory for geometric variational problems, the current state of the art regarding minimal surfaces in R3, the role of critical metrics in Riemannian geometry, and the modern perspective on the study of eigenfunctions and eigenvalues for Laplace–Beltrami operators.

The Ricci Flow

Publisher: American Mathematical Soc.
ISBN: STANFORD:36105128381675
Release Date: 2007
Genre: Global differential geometry

Entropy, $\mu$-invariant, and finite time singularities Geometric tools and point picking methods Geometric properties of $\kappa$-solutions Compactness of the space of $\kappa$-solutions Perelman's pseudolocality theorem Tools used in proof of pseudolocality Heat kernel for static metrics Heat kernel for evolving metrics Estimates of the heat equation for evolving metrics Bounds for the heat kernel for evolving metrics Elementary aspects of metric geometry Convex functions on Riemannian manifolds Asymptotic cones and Sharafutdinov retraction Solutions to selected exercises Bibliography Index

The Princeton Companion to Mathematics

Author: Timothy Gowers
Publisher: Princeton University Press
ISBN: 1400830397
Release Date: 2010-07-18
Genre: Mathematics

This is a one-of-a-kind reference for anyone with a serious interest in mathematics. Edited by Timothy Gowers, a recipient of the Fields Medal, it presents nearly two hundred entries, written especially for this book by some of the world's leading mathematicians, that introduce basic mathematical tools and vocabulary; trace the development of modern mathematics; explain essential terms and concepts; examine core ideas in major areas of mathematics; describe the achievements of scores of famous mathematicians; explore the impact of mathematics on other disciplines such as biology, finance, and music--and much, much more. Unparalleled in its depth of coverage, The Princeton Companion to Mathematics surveys the most active and exciting branches of pure mathematics. Accessible in style, this is an indispensable resource for undergraduate and graduate students in mathematics as well as for researchers and scholars seeking to understand areas outside their specialties. Features nearly 200 entries, organized thematically and written by an international team of distinguished contributors Presents major ideas and branches of pure mathematics in a clear, accessible style Defines and explains important mathematical concepts, methods, theorems, and open problems Introduces the language of mathematics and the goals of mathematical research Covers number theory, algebra, analysis, geometry, logic, probability, and more Traces the history and development of modern mathematics Profiles more than ninety-five mathematicians who influenced those working today Explores the influence of mathematics on other disciplines Includes bibliographies, cross-references, and a comprehensive index Contributors incude: Graham Allan, Noga Alon, George Andrews, Tom Archibald, Sir Michael Atiyah, David Aubin, Joan Bagaria, Keith Ball, June Barrow-Green, Alan Beardon, David D. Ben-Zvi, Vitaly Bergelson, Nicholas Bingham, Béla Bollobás, Henk Bos, Bodil Branner, Martin R. Bridson, John P. Burgess, Kevin Buzzard, Peter J. Cameron, Jean-Luc Chabert, Eugenia Cheng, Clifford C. Cocks, Alain Connes, Leo Corry, Wolfgang Coy, Tony Crilly, Serafina Cuomo, Mihalis Dafermos, Partha Dasgupta, Ingrid Daubechies, Joseph W. Dauben, John W. Dawson Jr., Francois de Gandt, Persi Diaconis, Jordan S. Ellenberg, Lawrence C. Evans, Florence Fasanelli, Anita Burdman Feferman, Solomon Feferman, Charles Fefferman, Della Fenster, José Ferreirós, David Fisher, Terry Gannon, A. Gardiner, Charles C. Gillispie, Oded Goldreich, Catherine Goldstein, Fernando Q. Gouvêa, Timothy Gowers, Andrew Granville, Ivor Grattan-Guinness, Jeremy Gray, Ben Green, Ian Grojnowski, Niccolò Guicciardini, Michael Harris, Ulf Hashagen, Nigel Higson, Andrew Hodges, F. E. A. Johnson, Mark Joshi, Kiran S. Kedlaya, Frank Kelly, Sergiu Klainerman, Jon Kleinberg, Israel Kleiner, Jacek Klinowski, Eberhard Knobloch, János Kollár, T. W. Körner, Michael Krivelevich, Peter D. Lax, Imre Leader, Jean-François Le Gall, W. B. R. Lickorish, Martin W. Liebeck, Jesper Lützen, Des MacHale, Alan L. Mackay, Shahn Majid, Lech Maligranda, David Marker, Jean Mawhin, Barry Mazur, Dusa McDuff, Colin McLarty, Bojan Mohar, Peter M. Neumann, Catherine Nolan, James Norris, Brian Osserman, Richard S. Palais, Marco Panza, Karen Hunger Parshall, Gabriel P. Paternain, Jeanne Peiffer, Carl Pomerance, Helmut Pulte, Bruce Reed, Michael C. Reed, Adrian Rice, Eleanor Robson, Igor Rodnianski, John Roe, Mark Ronan, Edward Sandifer, Tilman Sauer, Norbert Schappacher, Andrzej Schinzel, Erhard Scholz, Reinhard Siegmund-Schultze, Gordon Slade, David J. Spiegelhalter, Jacqueline Stedall, Arild Stubhaug, Madhu Sudan, Terence Tao, Jamie Tappenden, C. H. Taubes, Rüdiger Thiele, Burt Totaro, Lloyd N. Trefethen, Dirk van Dalen, Richard Weber, Dominic Welsh, Avi Wigderson, Herbert Wilf, David Wilkins, B. Yandell, Eric Zaslow, Doron Zeilberger