SAS Viya

Author: Kevin D. Smith
Publisher: SAS Institute
ISBN: 9781629608839
Release Date: 2018-02-08
Genre: Computers

Learn how to access analytics from SAS Cloud Analytic Services (CAS) using Python and the SAS Viya platform. SAS Viya : The Python Perspective is an introduction to using the Python client on the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. This book focuses on the perspective of SAS Viya from Python. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. The Python client is used to drive the CAS component directly using objects and constructs that are familiar to Python programmers. Some knowledge of Python would be helpful before using this book; however, there is an appendix that covers the features of Python that are used in the CAS Python client. Knowledge of CAS is not required to use this book. However, you will need to have a CAS server set up and running to execute the examples in this book. With this book, you will learn how to: Install the required components for accessing CAS from Python Connect to CAS, load data, and run simple analyses Work with CAS using APIs familiar to Python users Grasp general CAS workflows and advanced features of the CAS Python client SAS Viya : The Python Perspective covers topics that will be useful to beginners as well as experienced CAS users. It includes examples from creating connections to CAS all the way to simple statistics and machine learning, but it is also useful as a desktop reference.

SAS Viya

Author: Yue Qi
Publisher: SAS Institute
ISBN: 9781635267013
Release Date: 2018-07-20
Genre: Computers

Learn how to access analytics from SAS Cloud Analytic Services (CAS) using R and the SAS Viya platform. SAS Viya : The R Perspective is a general-purpose introduction to using R with the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. This book introduces an entirely new way of using SAS statistics from R, taking users step-by-step from installation and fundamentals to data exploration and modeling. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, R, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. The R client is used to drive the CAS component directly using commands and actions that are familiar to R programmers. Key features of this book include: Connecting to CAS from R Loading, managing, and exploring CAS Data from R Executing CAS actions and processing the results Handling CAS action errors Modeling continuous and categorical data This book is intended for R users who want to access SAS analytics as well as SAS users who are interested in trying R. Familiarity with R would be helpful before using this book although knowledge of CAS is not required. However, you will need to have a CAS server set up and running to execute the examples in this book.

SAS Viya

Author: Yue Qi
Publisher:
ISBN: 1635267048
Release Date: 2018-07-20
Genre: Computers

Learn how to access analytics from SAS Cloud Analytic Services (CAS) using R and the SAS® Viya® platform. SAS® Viya®: The R Perspective is a general-purpose introduction to using R with the SAS Viya platform. SAS Viya is a high-performance, fault-tolerant analytics architecture that can be deployed on both public and private cloud infrastructures. This book introduces an entirely new way of using SAS statistics from R, taking users step-by-step from installation and fundamentals to data exploration and modeling. SAS Viya is made up of multiple components. The central piece of this ecosystem is SAS Cloud Analytic Services (CAS). CAS is the cloud-based server that all clients communicate with to run analytical methods. While SAS Viya can be used by various SAS applications, it also enables you to access analytic methods from SAS, R, Python, Lua, and Java, as well as through a REST interface using HTTP or HTTPS. The R client is used to drive the CAS component directly using commands and actions that are familiar to R programmers. Key features of this book include: Connecting to CAS from R Loading, managing, and exploring CAS Data from R Executing CAS actions and processing the results Handling CAS action errors Modeling continuous and categorical data This book is intended for R users who want to access SAS analytics as well as SAS users who are interested in trying R. Familiarity with R would be helpful before using this book although knowledge of CAS is not required. However, you will need to have a CAS server set up and running to execute the examples in this book.

Deep Learning for Numerical Applications with SAS

Author: Henry Bequet
Publisher: SAS Institute
ISBN: 9781635266771
Release Date: 2018-07-20
Genre: Computers

Foreword by Oliver Schabenberger, PhD Executive Vice President, Chief Operating Officer and Chief Technology Officer SAS Dive into deep learning! Machine learning and deep learning are ubiquitous in our homes and workplaces—from machine translation to image recognition and predictive analytics to autonomous driving. Deep learning holds the promise of improving many everyday tasks in a variety of disciplines. Much deep learning literature explains the mechanics of deep learning with the goal of implementing cognitive applications fueled by Big Data. This book is different. Written by an expert in high-performance analytics, Deep Learning for Numerical Applications with SAS introduces a new field: Deep Learning for Numerical Applications (DL4NA). Contrary to deep learning, the primary goal of DL4NA is not to learn from data but to dramatically improve the performance of numerical applications by training deep neural networks. Deep Learning for Numerical Applications with SAS presents deep learning concepts in SAS along with step-by-step techniques that allow you to easily reproduce the examples on your high-performance analytics systems. It also discusses the latest hardware innovations that can power your SAS programs: from many-core CPUs to GPUs to FPGAs to ASICs. This book assumes the reader has no prior knowledge of high-performance computing, machine learning, or deep learning. It is intended for SAS developers who want to develop and run the fastest analytics. In addition to discovering the latest trends in hybrid architectures with GPUs and FPGAS, readers will learn how to Use deep learning in SAS Speed up their analytics using deep learning Easily write highly parallel programs using the many task computing paradigms This book is part of the SAS Press program.

An Introduction to SAS Visual Analytics

Author: Tricia Aanderud
Publisher: SAS Institute
ISBN: 9781635260427
Release Date: 2017-03-21
Genre: Computers

When it comes to business intelligence and analytical capabilities, SAS Visual Analytics is the premier solution for data discovery, visualization, and reporting. An Introduction to SAS Visual Analytics will show you how to make sense of your complex data with the goal of leading you to smarter, data-driven decisions without having to write a single line of code – unless you want to! You will be able to use SAS Visual Analytics to access, prepare, and present your data to anyone anywhere in the world. SAS Visual Analytics automatically highlights key relationships, outliers, clusters, trends and more. These abilities will guide you to critical insights that inspire action from your data. With this book, you will become proficient using SAS Visual Analytics to present data and results in customizable, robust visualizations, as well as guided analyses through auto-charting. With interactive dashboards, charts, and reports, you will create visualizations which convey clear and actionable insights for any size and type of data. This book largely focuses on the version of SAS Visual Analytics on SAS 9.4, although it is available on both 9.4 and SAS Viya platforms. Each version is considered the latest release, with subsequent releases planned to continue on each platform; hence, the Viya version works similarly to the 9.4 version and will look familiar. This book covers new features of each and important differences between the two. With this book, you will learn how to: Build your first report using the SAS Visual Analytics Designer Prepare a dashboard and determine the best layout Effectively use geo-spatial objects to add location analytics to reports Understand and use the elements of data visualizations Prepare and load your data with the SAS Visual Analytics Data Builder Analyze data with a variety of options, including forecasting, word clouds, heat maps, correlation matrix, and more Understand administration activities to keep SAS Visual Analytics humming along Optimize your environment for considerations such as scalability, availability, and efficiency between components of your SAS software deployment and data providers

The Little SAS Book

Author: Lora D. Delwiche
Publisher: SAS Institute
ISBN: 9781612904009
Release Date: 2012-10-12
Genre: Computers

A classic that just keeps getting better, The Little SAS Book is essential for anyone learning SAS programming. Lora Delwiche and Susan Slaughter offer a user-friendly approach so readers can quickly and easily learn the most commonly used features of the SAS language. Each topic is presented in a self-contained two-page layout complete with examples and graphics. The fifth edition has been completely updated to reflect the new default output introduced with SAS 9.3. In addition, there is a now a full chapter devoted to ODS Graphics including the SGPLOT and SGPANEL procedures. Other changes include expanded coverage of linguistic sorting and a new section on concatenating macro variables with other text. This book is a great tool for users of SAS 9.4 as well. This title belongs on every SAS programmer's bookshelf. It's a resource not just to get you started, but one you'll return to as you continue to improve your programming skills. This book is part of the SAS Press program.

Disruptive Analytics

Author: Thomas W. Dinsmore
Publisher: Apress
ISBN: 9781484213117
Release Date: 2016-08-27
Genre: Computers

Learn all you need to know about seven key innovations disrupting business analytics today. These innovations—the open source business model, cloud analytics, the Hadoop ecosystem, Spark and in-memory analytics, streaming analytics, Deep Learning, and self-service analytics—are radically changing how businesses use data for competitive advantage. Taken together, they are disrupting the business analytics value chain, creating new opportunities. Enterprises who seize the opportunity will thrive and prosper, while others struggle and decline: disrupt or be disrupted. Disruptive Business Analytics provides strategies to profit from disruption. It shows you how to organize for insight, build and provision an open source stack, how to practice lean data warehousing, and how to assimilate disruptive innovations into an organization. Through a short history of business analytics and a detailed survey of products and services, analytics authority Thomas W. Dinsmore provides a practical explanation of the most compelling innovations available today. What You'll Learn Discover how the open source business model works and how to make it work for you See how cloud computing completely changes the economics of analytics Harness the power of Hadoop and its ecosystem Find out why Apache Spark is everywhere Discover the potential of streaming and real-time analytics Learn what Deep Learning can do and why it matters See how self-service analytics can change the way organizations do business Who This Book Is For Corporate actors at all levels of responsibility for analytics: analysts, CIOs, CTOs, strategic decision makers, managers, systems architects, technical marketers, product developers, IT personnel, and consultants.

Data Mining and Statistics for Decision Making

Author: Stéphane Tufféry
Publisher: John Wiley & Sons
ISBN: 0470979283
Release Date: 2011-03-23
Genre: Computers

Data mining is the process of automatically searching large volumes of data for models and patterns using computational techniques from statistics, machine learning and information theory; it is the ideal tool for such an extraction of knowledge. Data mining is usually associated with a business or an organization's need to identify trends and profiles, allowing, for example, retailers to discover patterns on which to base marketing objectives. This book looks at both classical and recent techniques of data mining, such as clustering, discriminant analysis, logistic regression, generalized linear models, regularized regression, PLS regression, decision trees, neural networks, support vector machines, Vapnik theory, naive Bayesian classifier, ensemble learning and detection of association rules. They are discussed along with illustrative examples throughout the book to explain the theory of these methods, as well as their strengths and limitations. Key Features: Presents a comprehensive introduction to all techniques used in data mining and statistical learning, from classical to latest techniques. Starts from basic principles up to advanced concepts. Includes many step-by-step examples with the main software (R, SAS, IBM SPSS) as well as a thorough discussion and comparison of those software. Gives practical tips for data mining implementation to solve real world problems. Looks at a range of tools and applications, such as association rules, web mining and text mining, with a special focus on credit scoring. Supported by an accompanying website hosting datasets and user analysis. Statisticians and business intelligence analysts, students as well as computer science, biology, marketing and financial risk professionals in both commercial and government organizations across all business and industry sectors will benefit from this book.

What s New in SAS 9 4

Author: SAS
Publisher: SAS Institute
ISBN: 9781629609775
Release Date: 2016-12-09
Genre: Computers

Gives you a quick, convenient overview of new functionality, enhanced features, and new products that you might use in SAS 9.4.

SAS For Dummies

Author: Stephen McDaniel
Publisher: John Wiley & Sons
ISBN: 1118044010
Release Date: 2011-04-18
Genre: Computers

Created in partnership with SAS, this book explores SAS, a business intelligence software that can be used in any business setting or enterprise for data delivery, reporting, data mining, forecasting, statistical analysis, and more SAS employee and technologist Stephen McDaniel combines real-world expertise and a friendly writing style to introduce readers to SAS basics Covers crucial topics such as getting various types of data into the software, producing reports, working with the data, basic SAS programming, macros, and working with SAS and databases

Heuristics in Analytics

Author: Carlos Andre Reis Pinheiro
Publisher: John Wiley & Sons
ISBN: 9781118416747
Release Date: 2014-01-31
Genre: Business & Economics

Employ heuristic adjustments for truly accurate analysis Heuristics in Analytics presents an approach to analysis that accounts for the randomness of business and the competitive marketplace, creating a model that more accurately reflects the scenario at hand. With an emphasis on the importance of proper analytical tools, the book describes the analytical process from exploratory analysis through model developments, to deployments and possible outcomes. Beginning with an introduction to heuristic concepts, readers will find heuristics applied to statistics and probability, mathematics, stochastic, and artificial intelligence models, ending with the knowledge applications that solve business problems. Case studies illustrate the everyday application and implication of the techniques presented, while the heuristic approach is integrated into analytical modeling, graph analysis, text analytics, and more. Robust analytics has become crucial in the corporate environment, and randomness plays an enormous role in business and the competitive marketplace. Failing to account for randomness can steer a model in an entirely wrong direction, negatively affecting the final outcome and potentially devastating the bottom line. Heuristics in Analytics describes how the heuristic characteristics of analysis can be overcome with problem design, math and statistics, helping readers to: Realize just how random the world is, and how unplanned events can affect analysis Integrate heuristic and analytical approaches to modeling and problem solving Discover how graph analysis is applied in real-world scenarios around the globe Apply analytical knowledge to customer behavior, insolvency prevention, fraud detection, and more Understand how text analytics can be applied to increase the business knowledge Every single factor, no matter how large or how small, must be taken into account when modeling a scenario or event—even the unknowns. The presence or absence of even a single detail can dramatically alter eventual outcomes. From raw data to final report, Heuristics in Analytics contains the information analysts need to improve accuracy, and ultimately, predictive, and descriptive power.

Custom Tasks for SAS Enterprise Guide Using Microsoft NET

Author: Chris Hemedinger
Publisher: SAS Institute
ISBN: 9781612900971
Release Date: 2012-12-20
Genre: Mathematics

Have you ever used SAS Enterprise Guide and found yourself wishing that it had that one specific feature, something that you know would make it the perfect tool for your work or industry? You don't have to settle for just the "out of the box" features; you can add your own capabilities with SAS custom tasks! Chris Hemedinger's new book takes you step-by-step through the process of creating custom tasks for use in SAS Enterprise Guide and SAS Add-In for Microsoft Office. Using standard off-the-shelf development tools for Microsoft .NET, you'll learn how you can hook in your custom processes and make them available to a wide range of SAS users. In the first part of the book, you'll learn how to use the development environment and the programming interfaces provided by SAS to create, test, and deploy new custom tasks. You'll learn about the services that the SAS Enterprise Guide framework offers, including data access, the ability to run SAS programs, and integration of your custom results into a SAS Enterprise Guide project. In the second part of the book, Hemedinger provides a variety of useful, field-tested and ready-to-run examples—complete with C# and Visual Basic .NET source code. Each example highlights different programming techniques that you can apply immediately within your own custom tasks. The book also addresses important aspects of .NET programming, such as debugging, exception handling, threading models, and user interface design. This book is part of the SAS Press program.

SAS and R

Author: Ken Kleinman
Publisher: CRC Press
ISBN: 9781466584495
Release Date: 2014-07-17
Genre: Mathematics

An Up-to-Date, All-in-One Resource for Using SAS and R to Perform Frequent Tasks The first edition of this popular guide provided a path between SAS and R using an easy-to-understand, dictionary-like approach. Retaining the same accessible format, SAS and R: Data Management, Statistical Analysis, and Graphics, Second Edition explains how to easily perform an analytical task in both SAS and R, without having to navigate through the extensive, idiosyncratic, and sometimes unwieldy software documentation. The book covers many common tasks, such as data management, descriptive summaries, inferential procedures, regression analysis, and graphics, along with more complex applications. New to the Second Edition This edition now covers RStudio, a powerful and easy-to-use interface for R. It incorporates a number of additional topics, including using application program interfaces (APIs), accessing data through database management systems, using reproducible analysis tools, and statistical analysis with Markov chain Monte Carlo (MCMC) methods and finite mixture models. It also includes extended examples of simulations and many new examples. Enables Easy Mobility between the Two Systems Through the extensive indexing and cross-referencing, users can directly find and implement the material they need. SAS users can look up tasks in the SAS index and then find the associated R code while R users can benefit from the R index in a similar manner. Numerous example analyses demonstrate the code in action and facilitate further exploration. The datasets and code are available for download on the book’s website.

Visual Data Mining

Author: Simeon Simoff
Publisher: Springer
ISBN: 9783540710806
Release Date: 2008-07-23
Genre: Computers

Visual Data Mining—Opening the Black Box Knowledge discovery holds the promise of insight into large, otherwise opaque datasets. Thenatureofwhatmakesaruleinterestingtoauserhasbeendiscussed 1 widely but most agree that it is a subjective quality based on the practical u- fulness of the information. Being subjective, the user needs to provide feedback to the system and, as is the case for all systems, the sooner the feedback is given the quicker it can in?uence the behavior of the system. There have been some impressive research activities over the past few years but the question to be asked is why is visual data mining only now being - vestigated commercially? Certainly, there have been arguments for visual data 2 mining for a number of years – Ankerst and others argued in 2002 that current (autonomous and opaque) analysis techniques are ine?cient, as they fail to - rectly embed the user in dataset exploration and that a better solution involves the user and algorithm being more tightly coupled. Grinstein stated that the “current state of the art data mining tools are automated, but the perfect data mining tool is interactive and highly participatory,” while Han has suggested that the “data selection and viewing of mining results should be fully inter- tive, the mining process should be more interactive than the current state of the 2 art and embedded applications should be fairly automated . ” A good survey on 3 techniques until 2003 was published by de Oliveira and Levkowitz .

ODS Techniques

Author: Kevin D. Smith
Publisher: SAS Institute
ISBN: 9781629591377
Release Date: 2014-03-01
Genre: Mathematics

Enhance your SAS ODS output with this collection of basic to novel ideas. SAS Output Delivery System (ODS) expert Kevin D. Smith has compiled a cookbook-style collection of his top ODS tips and techniques to teach you how to bring your reports to a new level and inspire you to see ODS in a new light. This collection of code techniques showcases some of the most interesting and unusual methods you can use to enhance your reports within the SAS Output Delivery System. It includes general ODS tips, as well as techniques for styles, enhancing tabular output, ODS HTML, ODS PDF, ODS Microsoft Excel destinations, and ODS DOCUMENT. Smith offers tips based on his own extensive knowledge of ODS, as well as those inspired by questions that frequently come up in his interactions with SAS users. There are simple techniques for beginners who have a minimal amount of ODS knowledge and advanced tips for the more adventurous SAS user. Together, these helpful methods provide a strong foundation for your ODS development and inspiration for building on and creating new, even more advanced techniques on your own. This book is part of the SAS Press program.