Sentiment Analysis

Author: Bing Liu
Publisher: Cambridge University Press
ISBN: 9781316298329
Release Date: 2015-06-04
Genre: Computers

Sentiment analysis is the computational study of people's opinions, sentiments, emotions, and attitudes. This fascinating problem is increasingly important in business and society. It offers numerous research challenges but promises insight useful to anyone interested in opinion analysis and social media analysis. This book gives a comprehensive introduction to the topic from a primarily natural-language-processing point of view to help readers understand the underlying structure of the problem and the language constructs that are commonly used to express opinions and sentiments. It covers all core areas of sentiment analysis, includes many emerging themes, such as debate analysis, intention mining, and fake-opinion detection, and presents computational methods to analyze and summarize opinions. It will be a valuable resource for researchers and practitioners in natural language processing, computer science, management sciences, and the social sciences.

Sentiment Analysis and Opinion Mining

Author: Bing Liu
Publisher: Morgan & Claypool Publishers
ISBN: 9781608458844
Release Date: 2012
Genre: Language Arts & Disciplines

Sentiment analysis and opinion mining is the field of study that analyzes people's opinions, sentiments, evaluations, attitudes, and emotions from written language. It is one of the most active research areas in natural language processing and is also widely studied in data mining, Web mining, and text mining. In fact, this research has spread outside of computer science to the management sciences and social sciences due to its importance to business and society as a whole. The growing importance of sentiment analysis coincides with the growth of social media such as reviews, forum discussions, blogs, micro-blogs, Twitter, and social networks. For the first time in human history, we now have a huge volume of opinionated data recorded in digital form for analysis.Sentiment analysis systems are being applied in almost every business and social domain because opinions are central to almost all human activities and are key influencers of our behaviors. Our beliefs and perceptions of reality, and the choices we make, are largely conditioned on how others see and evaluate the world. For this reason, when we need to make a decision we often seek out the opinions of others. This is true not only for individuals but also for organizations.This book is a comprehensive introductory and survey text. It covers all important topics and the latest developments in the field with over 400 references. It is suitable for students, researchers and practitioners who are interested in social media analysis in general and sentiment analysis in particular. Lecturers can readily use it in class for courses on natural language processing, social media analysis, text mining, and data mining. Lecture slides are also available online.Table of Contents: Preface / Sentiment Analysis: A Fascinating Problem / The Problem of Sentiment Analysis / Document Sentiment Classification / Sentence Subjectivity and Sentiment Classification / Aspect-Based Sentiment Analysis / Sentiment Lexicon Generation / Opinion Summarization / Analysis of Comparative Opinions / Opinion Search and Retrieval / Opinion Spam Detection / Quality of Reviews / Concluding Remarks / Bibliography / Author Biography

Sentiment Analysis in Social Networks

Author: Federico Alberto Pozzi
Publisher: Morgan Kaufmann
ISBN: 9780128044384
Release Date: 2016-10-06
Genre: Computers

The aim of Sentiment Analysis is to define automatic tools able to extract subjective information from texts in natural language, such as opinions and sentiments, in order to create structured and actionable knowledge to be used by either a decision support system or a decision maker. Sentiment analysis has gained even more value with the advent and growth of social networking. Sentiment Analysis in Social Networks begins with an overview of the latest research trends in the field. It then discusses the sociological and psychological processes underling social network interactions. The book explores both semantic and machine learning models and methods that address context-dependent and dynamic text in online social networks, showing how social network streams pose numerous challenges due to their large-scale, short, noisy, context- dependent and dynamic nature. Further, this volume: Takes an interdisciplinary approach from a number of computing domains, including natural language processing, machine learning, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network analysis Shows how to apply sentiment analysis tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics Takes an interdisciplinary approach from a number of computing domains, including natural language processing, big data, and statistical methodologies Provides insights into opinion spamming, reasoning, and social network mining Shows how to apply opinion mining tools for a particular application and domain, and how to get the best results for understanding the consequences Serves as a one-stop reference for the state-of-the-art in social media analytics

A Practical Guide to Sentiment Analysis

Author: Erik Cambria
Publisher: Springer
ISBN: 9783319553948
Release Date: 2017-05-12
Genre: Medical

Sentiment analysis research has been started long back and recently it is one of the demanding research topics. Research activities on Sentiment Analysis in natural language texts and other media are gaining ground with full swing. But, till date, no concise set of factors has been yet defined that really affects how writers’ sentiment i.e., broadly human sentiment is expressed, perceived, recognized, processed, and interpreted in natural languages. The existing reported solutions or the available systems are still far from perfect or fail to meet the satisfaction level of the end users. The reasons may be that there are dozens of conceptual rules that govern sentiment and even there are possibly unlimited clues that can convey these concepts from realization to practical implementation. Therefore, the main aim of this book is to provide a feasible research platform to our ambitious researchers towards developing the practical solutions that will be indeed beneficial for our society, business and future researches as well.

Affective Computing and Sentiment Analysis

Author: Khurshid Ahmad
Publisher: Springer Science & Business Media
ISBN: 9400717571
Release Date: 2011-08-24
Genre: Computers

This volume maps the watershed areas between two 'holy grails' of computer science: the identification and interpretation of affect – including sentiment and mood. The expression of sentiment and mood involves the use of metaphors, especially in emotive situations. Affect computing is rooted in hermeneutics, philosophy, political science and sociology, and is now a key area of research in computer science. The 24/7 news sites and blogs facilitate the expression and shaping of opinion locally and globally. Sentiment analysis, based on text and data mining, is being used in the looking at news and blogs for purposes as diverse as: brand management, film reviews, financial market analysis and prediction, homeland security. There are systems that learn how sentiments are articulated. This work draws on, and informs, research in fields as varied as artificial intelligence, especially reasoning and machine learning, corpus-based information extraction, linguistics, and psychology.

Web Data Mining

Author: Bing Liu
Publisher: Springer Science & Business Media
ISBN: 3642194605
Release Date: 2011-06-25
Genre: Computers

Web mining aims to discover useful information and knowledge from Web hyperlinks, page contents, and usage data. Although Web mining uses many conventional data mining techniques, it is not purely an application of traditional data mining due to the semi-structured and unstructured nature of the Web data. The field has also developed many of its own algorithms and techniques. Liu has written a comprehensive text on Web mining, which consists of two parts. The first part covers the data mining and machine learning foundations, where all the essential concepts and algorithms of data mining and machine learning are presented. The second part covers the key topics of Web mining, where Web crawling, search, social network analysis, structured data extraction, information integration, opinion mining and sentiment analysis, Web usage mining, query log mining, computational advertising, and recommender systems are all treated both in breadth and in depth. His book thus brings all the related concepts and algorithms together to form an authoritative and coherent text. The book offers a rich blend of theory and practice. It is suitable for students, researchers and practitioners interested in Web mining and data mining both as a learning text and as a reference book. Professors can readily use it for classes on data mining, Web mining, and text mining. Additional teaching materials such as lecture slides, datasets, and implemented algorithms are available online.

Mining Text Data

Author: Charu C. Aggarwal
Publisher: Springer Science & Business Media
ISBN: 9781461432234
Release Date: 2012-02-03
Genre: Computers

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a special focus on Text Embedded with Heterogeneous and Multimedia Data which makes the mining process much more challenging. A number of methods have been designed such as transfer learning and cross-lingual mining for such cases. Mining Text Data simplifies the content, so that advanced-level students, practitioners and researchers in computer science can benefit from this book. Academic and corporate libraries, as well as ACM, IEEE, and Management Science focused on information security, electronic commerce, databases, data mining, machine learning, and statistics are the primary buyers for this reference book.

Opinion Mining and Sentiment Analysis

Author: Bo Pang
Publisher: Now Publishers Inc
ISBN: 9781601981509
Release Date: 2008
Genre: Computers

This survey covers techniques and approaches that promise to directly enable opinion-oriented information-seeking systems.

Text Mining with R

Author: Julia Silge
Publisher: "O'Reilly Media, Inc."
ISBN: 9781491981627
Release Date: 2017-06-12
Genre: Computers

Much of the data available today is unstructured and text-heavy, making it challenging for analysts to apply their usual data wrangling and visualization tools. With this practical book, you’ll explore text-mining techniques with tidytext, a package that authors Julia Silge and David Robinson developed using the tidy principles behind R packages like ggraph and dplyr. You’ll learn how tidytext and other tidy tools in R can make text analysis easier and more effective. The authors demonstrate how treating text as data frames enables you to manipulate, summarize, and visualize characteristics of text. You’ll also learn how to integrate natural language processing (NLP) into effective workflows. Practical code examples and data explorations will help you generate real insights from literature, news, and social media. Learn how to apply the tidy text format to NLP Use sentiment analysis to mine the emotional content of text Identify a document’s most important terms with frequency measurements Explore relationships and connections between words with the ggraph and widyr packages Convert back and forth between R’s tidy and non-tidy text formats Use topic modeling to classify document collections into natural groups Examine case studies that compare Twitter archives, dig into NASA metadata, and analyze thousands of Usenet messages

Lifelong Machine Learning

Author: Zhiyuan Chen
Publisher: Morgan & Claypool Publishers
ISBN: 9781681731810
Release Date: 2016-11-07
Genre: Computers

Lifelong Machine Learning (or Lifelong Learning) is an advanced machine learning paradigm that learns continuously, accumulates the knowledge learned in previous tasks, and uses it to help future learning. In the process, the learner becomes more and more knowledgeable and effective at learning. This learning ability is one of the hallmarks of human intelligence. However, the current dominant machine learning paradigm learns in isolation: given a training dataset, it runs a machine learning algorithm on the dataset to produce a model. It makes no attempt to retain the learned knowledge and use it in future learning. Although this isolated learning paradigm has been very successful, it requires a large number of training examples, and is only suitable for well-defined and narrow tasks. In comparison, we humans can learn effectively with a few examples because we have accumulated so much knowledge in the past which enables us to learn with little data or effort. Lifelong learning aims to achieve this capability. As statistical machine learning matures, it is time to make a major effort to break the isolated learning tradition and to study lifelong learning to bring machine learning to new heights. Applications such as intelligent assistants, chatbots, and physical robots that interact with humans and systems in real-life environments are also calling for such lifelong learning capabilities. Without the ability to accumulate the learned knowledge and use it to learn more knowledge incrementally, a system will probably never be truly intelligent. This book serves as an introductory text and survey to lifelong learning.

Language Production Cognition and the Lexicon

Author: Núria Gala
Publisher: Springer
ISBN: 9783319080437
Release Date: 2014-11-11
Genre: Computers

The book collects contributions from well-established researchers at the interface between language and cognition. It provides an overview of the latest insights into this interdisciplinary field from the perspectives of natural language processing, computer science, psycholinguistics and cognitive science. One of the pioneers in cognitive natural language processing is Michael Zock, to whom this volume is dedicated. The structure of the book reflects his main research interests: lexicon and lexical analysis, semantics, language and speech generation, reading and writing technologies, language resources and language engineering. The book is a valuable reference work and authoritative information source, giving an overview on the field and describing the state of the art as well as future developments. It is intended for researchers and advanced students interested in the subject. One of the pioneers in cognitive natural language processing is Michael Zock, to whom this volume is dedicated. The structure of the book reflects his main research interests: Lexicon and lexical analysis, semantics, language and speech generation, reading and writing technologies, language resources and language engineering. The book is a valuable reference work and authoritative information source, giving an overview on the field and describing the state of the art as well as future developments. It is intended for researchers and advanced students interested in the subject. One of the pioneers in cognitive natural language processing is Michael Zock, to whom this volume is dedicated. The structure of the book reflects his main research interests: Lexicon and lexical analysis, semantics, language and speech generation, reading and writing technologies, language resources and language engineering. The book is a valuable reference work and authoritative information source, giving an overview on the field and describing the state of the art as well as future developments. It is intended for researchers and advanced students interested in the subject.

Fundamentals of Predictive Text Mining

Author: Sholom M. Weiss
Publisher: Springer
ISBN: 9781447167501
Release Date: 2015-09-07
Genre: Computers

This successful textbook on predictive text mining offers a unified perspective on a rapidly evolving field, integrating topics spanning the varied disciplines of data science, machine learning, databases, and computational linguistics. Serving also as a practical guide, this unique book provides helpful advice illustrated by examples and case studies. This highly anticipated second edition has been thoroughly revised and expanded with new material on deep learning, graph models, mining social media, errors and pitfalls in big data evaluation, Twitter sentiment analysis, and dependency parsing discussion. The fully updated content also features in-depth discussions on issues of document classification, information retrieval, clustering and organizing documents, information extraction, web-based data-sourcing, and prediction and evaluation. Features: includes chapter summaries and exercises; explores the application of each method; provides several case studies; contains links to free text-mining software.

Trading on Sentiment

Author: Richard L. Peterson
Publisher: John Wiley & Sons
ISBN: 9781119163749
Release Date: 2016-03-02
Genre: Business & Economics

In his debut book on trading psychology, Inside the Investor’s Brain, Rich­ard Peterson demonstrated how managing emotions helps top investors outperform. Now, in Trading on Sentiment, he takes you inside the science of crowd psychol­ogy and demonstrates that not only do price patterns exist, but the most predictable ones are rooted in our shared human nature. Peterson’s team developed text analysis engines to mine data - topics, beliefs, and emotions - from social media. Based on that data, they put together a market-neutral social media-based hedge fund that beat the S&P 500 by more than twenty-four percent—through the 2008 financial crisis. In this groundbreaking guide, he shows you how they did it and why it worked. Applying algorithms to so­cial media data opened up an unprecedented world of insight into the elusive patterns of investor sentiment driving repeating market moves. Inside, you gain a privi­leged look at the media content that moves investors, along with time-tested techniques to make the smart moves—even when it doesn’t feel right. This book digs underneath technicals and fundamentals to explain the primary mover of market prices - the global information flow and how investors react to it. It provides the expert guidance you need to develop a competitive edge, manage risk, and overcome our sometimes-flawed human nature. Learn how traders are using sentiment analysis and statistical tools to extract value from media data in order to: Foresee important price moves using an understanding of how investors process news. Make more profitable investment decisions by identifying when prices are trending, when trends are turning, and when sharp market moves are likely to reverse. Use media sentiment to improve value and momentum investing returns. Avoid the pitfalls of unique price patterns found in commodities, currencies, and during speculative bubbles Trading on Sentiment deepens your understanding of markets and supplies you with the tools and techniques to beat global markets— whether they’re going up, down, or sideways.

Data Management in Pervasive Systems

Author: Francesco Colace
Publisher: Springer
ISBN: 9783319200620
Release Date: 2015-10-17
Genre: Computers

This book contributes to illustrating the methodological and technological issues of data management in Pervasive Systems by using the DataBenc project as the running case study for a variety of research contributions: sensor data management, user-originated data operation and reasoning, multimedia data management, data analytics and reasoning for event detection and decision making, context modelling and control, automatic data and service tailoring for personalization and recommendation. The book is organized into the following main parts: i) multimedia information management; ii) sensor data streams and storage; iii) social networks as information sources; iv) context awareness and personalization. The case study is used throughout the book as a reference example.

Data Mining and Knowledge Discovery for Big Data

Author: Wesley W. Chu
Publisher: Springer Science & Business Media
ISBN: 9783642408373
Release Date: 2013-09-24
Genre: Computers

The field of data mining has made significant and far-reaching advances over the past three decades. Because of its potential power for solving complex problems, data mining has been successfully applied to diverse areas such as business, engineering, social media, and biological science. Many of these applications search for patterns in complex structural information. In biomedicine for example, modeling complex biological systems requires linking knowledge across many levels of science, from genes to disease. Further, the data characteristics of the problems have also grown from static to dynamic and spatiotemporal, complete to incomplete, and centralized to distributed, and grow in their scope and size (this is known as big data). The effective integration of big data for decision-making also requires privacy preservation. The contributions to this monograph summarize the advances of data mining in the respective fields. This volume consists of nine chapters that address subjects ranging from mining data from opinion, spatiotemporal databases, discriminative subgraph patterns, path knowledge discovery, social media, and privacy issues to the subject of computation reduction via binary matrix factorization.