Sets Logic and Maths for Computing

Author: David Makinson
Publisher: Springer Science & Business Media
ISBN: 9781447125006
Release Date: 2012-02-27
Genre: Computers

This easy-to-follow textbook introduces the mathematical language, knowledge and problem-solving skills that undergraduates need to study computing. The language is in part qualitative, with concepts such as set, relation, function and recursion/induction; but it is also partly quantitative, with principles of counting and finite probability. Entwined with both are the fundamental notions of logic and their use for representation and proof. Features: teaches finite math as a language for thinking, as much as knowledge and skills to be acquired; uses an intuitive approach with a focus on examples for all general concepts; brings out the interplay between the qualitative and the quantitative in all areas covered, particularly in the treatment of recursion and induction; balances carefully the abstract and concrete, principles and proofs, specific facts and general perspectives; includes highlight boxes that raise common queries and clear confusions; provides numerous exercises, with selected solutions.

Fundamentals of Discrete Math for Computer Science

Author: Tom Jenkyns
Publisher: Springer
ISBN: 9783319701516
Release Date: 2018-05-03
Genre: Computers

This clearly written textbook presents an accessible introduction to discrete mathematics for computer science students, offering the reader an enjoyable and stimulating path to improve their programming competence. The text empowers students to think critically, to be effective problem solvers, to integrate theory and practice, and to recognize the importance of abstraction. Its motivational and interactive style provokes a conversation with the reader through a questioning commentary, and supplies detailed walkthroughs of several algorithms. This updated and enhanced new edition also includes new material on directed graphs, and on drawing and coloring graphs, in addition to more than 100 new exercises (with solutions to selected exercises). Topics and features: assumes no prior mathematical knowledge, and discusses concepts in programming as and when they are needed; designed for both classroom use and self-study, presenting modular and self-contained chapters that follow ACM curriculum recommendations; describes mathematical processes in an algorithmic manner, often supported by a walkthrough demonstrating how the algorithm performs the desired task; includes an extensive set of exercises throughout the text, together with numerous examples, and shaded boxes highlighting key concepts; selects examples that demonstrate a practical use for the concept in question. Students embarking on the start of their studies of computer science will find this book to be an easy-to-understand and fun-to-read primer, ideal for use in a mathematics course taken concurrently with their first programming course.

Foundation Mathematics for Computer Science

Author: John Vince
Publisher: Springer
ISBN: 9783319214375
Release Date: 2015-07-27
Genre: Computers

John Vince describes a range of mathematical topics to provide a foundation for an undergraduate course in computer science, starting with a review of number systems and their relevance to digital computers, and finishing with differential and integral calculus. Readers will find that the author's visual approach will greatly improve their understanding as to why certain mathematical structures exist, together with how they are used in real-world applications. Each chapter includes full-colour illustrations to clarify the mathematical descriptions, and in some cases, equations are also coloured to reveal vital algebraic patterns. The numerous worked examples will consolidate comprehension of abstract mathematical concepts. Foundation Mathematics for Computer Science covers number systems, algebra, logic, trigonometry, coordinate systems, determinants, vectors, matrices, geometric matrix transforms, differential and integral calculus, and reveals the names of the mathematicians behind such inventions. During this journey, John Vince touches upon more esoteric topics such as quaternions, octonions, Grassmann algebra, Barycentric coordinates, transfinite sets and prime numbers. Whether you intend to pursue a career in programming, scientific visualisation, systems design, or real-time computing, you should find the author’s literary style refreshingly lucid and engaging, and prepare you for more advanced texts.

Proofs and Algorithms

Author: Gilles Dowek
Publisher: Springer Science & Business Media
ISBN: 0857291211
Release Date: 2011-01-11
Genre: Computers

Logic is a branch of philosophy, mathematics and computer science. It studies the required methods to determine whether a statement is true, such as reasoning and computation. Proofs and Algorithms: Introduction to Logic and Computability is an introduction to the fundamental concepts of contemporary logic - those of a proof, a computable function, a model and a set. It presents a series of results, both positive and negative, - Church's undecidability theorem, Gödel’s incompleteness theorem, the theorem asserting the semi-decidability of provability - that have profoundly changed our vision of reasoning, computation, and finally truth itself. Designed for undergraduate students, this book presents all that philosophers, mathematicians and computer scientists should know about logic.

Mathematics for Computer Graphics

Author: John Vince
Publisher: Springer
ISBN: 9781447173366
Release Date: 2017-08-28
Genre: Computers

John Vince explains a wide range of mathematical techniques and problem-solving strategies associated with computer games, computer animation, virtual reality, CAD and other areas of computer graphics in this completely revised and expanded fifth edition. The first five chapters cover a general introduction, number sets, algebra, trigonometry and coordinate systems, which are employed in the following chapters on vectors, matrix algebra, transforms, interpolation, curves and patches, analytic geometry and barycentric coordinates. Following this, the reader is introduced to the relatively new topic of geometric algebra, followed by two chapters that introduce differential and integral calculus. Finally, there is a chapter on worked examples. Mathematics for Computer Graphics covers all of the key areas of the subject, including: · Number sets · Algebra · Trigonometry · Coordinate systems · Determinants · Vectors · Quaternions · Matrix algebra · Geometric transforms · Interpolation · Curves and surfaces · Analytic geometry · Barycentric coordinates · Geometric algebra · Differential calculus · Integral calculus This fifth edition contains over 120 worked examples and over 320 colour illustrations, which are central to the author’s descriptive writing style. Mathematics for Computer Graphics provides a sound understanding of the mathematics required for computer graphics, giving a fascinating insight into the design of computer graphics software and setting the scene for further reading of more advanced books and technical research papers.

Modelling Computing Systems

Author: Faron Moller
Publisher: Springer
ISBN: 1848003218
Release Date: 2013-07-24
Genre: Computers

This engaging text presents the fundamental mathematics and modelling techniques for computing systems in a novel and light-hearted way, which can be easily followed by students at the very beginning of their university education. Key concepts are taught through a large collection of challenging yet fun mathematical games and logical puzzles that require no prior knowledge about computers. The text begins with intuition and examples as a basis from which precise concepts are then developed; demonstrating how, by working within the confines of a precise structured method, the occurrence of errors in the system can be drastically reduced. Features: demonstrates how game theory provides a paradigm for an intuitive understanding of the nature of computation; contains more than 400 exercises throughout the text, with detailed solutions to half of these presented at the end of the book, together with numerous theorems, definitions and examples; describes a modelling approach based on state transition systems.

A Concise Introduction to Languages and Machines

Author: Alan P. Parkes
Publisher: Springer Science & Business Media
ISBN: 9781848001213
Release Date: 2009-06-29
Genre: Computers

A Concise Introduction to Languages, Machines and Logic provides an accessible introduction to three key topics within computer science: formal languages, abstract machines and formal logic. Written in an easy-to-read, informal style, this textbook assumes only a basic knowledge of programming on the part of the reader. The approach is deliberately non-mathematical, and features: - Clear explanations of formal notation and jargon, - Extensive use of examples to illustrate algorithms and proofs, - Pictorial representations of key concepts, - Chapter opening overviews providing an introduction and guidance to each topic, - End-of-chapter exercises and solutions, - Offers an intuitive approach to the topics. This reader-friendly textbook has been written with undergraduates in mind and will be suitable for use on course covering formal languages, formal logic, computability and automata theory. It will also make an excellent supplementary text for courses on algorithm complexity and compilers.

Logic in Computer Science

Author: Michael Huth
Publisher: Cambridge University Press
ISBN: 9781139453059
Release Date: 2004-08-26
Genre: Computers

Recent years have seen the development of powerful tools for verifying hardware and software systems, as companies worldwide realise the need for improved means of validating their products. There is increasing demand for training in basic methods in formal reasoning so that students can gain proficiency in logic-based verification methods. The second edition of this successful textbook addresses both those requirements, by continuing to provide a clear introduction to formal reasoning which is both relevant to the needs of modern computer science and rigorous enough for practical application. Improvements to the first edition have been made throughout, with extra and expanded sections on SAT solvers, existential/universal second-order logic, micro-models, programming by contract and total correctness. The coverage of model-checking has been substantially updated. Further exercises have been added. Internet support for the book includes worked solutions for all exercises for teachers, and model solutions to some exercises for students.

Mathematics of Discrete Structures for Computer Science

Author: Gordon J. Pace
Publisher: Springer Science & Business Media
ISBN: 9783642298394
Release Date: 2012-07-09
Genre: Computers

Mathematics plays a key role in computer science, some researchers would consider computers as nothing but the physical embodiment of mathematical systems. And whether you are designing a digital circuit, a computer program or a new programming language, you need mathematics to be able to reason about the design -- its correctness, robustness and dependability. This book covers the foundational mathematics necessary for courses in computer science. The common approach to presenting mathematical concepts and operators is to define them in terms of properties they satisfy, and then based on these definitions develop ways of computing the result of applying the operators and prove them correct. This book is mainly written for computer science students, so here the author takes a different approach: he starts by defining ways of calculating the results of applying the operators and then proves that they satisfy various properties. After justifying his underlying approach the author offers detailed chapters covering propositional logic, predicate calculus, sets, relations, discrete structures, structured types, numbers, and reasoning about programs. The book contains chapter and section summaries, detailed proofs and many end-of-section exercises -- key to the learning process. The book is suitable for undergraduate and graduate students, and although the treatment focuses on areas with frequent applications in computer science, the book is also suitable for students of mathematics and engineering.

Applied Logic for Computer Scientists

Author: Mauricio Ayala-Rincón
Publisher: Springer
ISBN: 9783319516530
Release Date: 2017-03-24
Genre: Computers

This book provides an introduction to logic and mathematical induction which are the basis of any deductive computational framework. A strong mathematical foundation of the logical engines available in modern proof assistants, such as the PVS verification system, is essential for computer scientists, mathematicians and engineers to increment their capabilities to provide formal proofs of theorems and to certify the robustness of software and hardware systems. The authors present a concise overview of the necessary computational and mathematical aspects of ‘logic’, placing emphasis on both natural deduction and sequent calculus. Differences between constructive and classical logic are highlighted through several examples and exercises. Without neglecting classical aspects of computational logic, the authors also highlight the connections between logical deduction rules and proof commands in proof assistants, presenting simple examples of formalizations of the correctness of algebraic functions and algorithms in PVS. Applied Logic for Computer Scientists will not only benefit students of computer science and mathematics but also software, hardware, automation, electrical and mechatronic engineers who are interested in the application of formal methods and the related computational tools to provide mathematical certificates of the quality and accuracy of their products and technologies.

Mathematics for Computer Science

Author: Eric Lehman
Publisher:
ISBN: 9888407066
Release Date: 2017-03-08
Genre:

This book covers elementary discrete mathematics for computer science and engineering. It emphasizes mathematical definitions and proofs as well as applicable methods. Topics include formal logic notation, proof methods; induction, well-ordering; sets, relations; elementary graph theory; integer congruences; asymptotic notation and growth of functions; permutations and combinations, counting principles; discrete probability. Further selected topics may also be covered, such as recursive definition and structural induction; state machines and invariants; recurrences; generating functions.

Three Views of Logic

Author: Donald W. Loveland
Publisher: Princeton University Press
ISBN: 9781400848751
Release Date: 2014-01-26
Genre: Mathematics

Demonstrating the different roles that logic plays in the disciplines of computer science, mathematics, and philosophy, this concise undergraduate textbook covers select topics from three different areas of logic: proof theory, computability theory, and nonclassical logic. The book balances accessibility, breadth, and rigor, and is designed so that its materials will fit into a single semester. Its distinctive presentation of traditional logic material will enhance readers' capabilities and mathematical maturity. The proof theory portion presents classical propositional logic and first-order logic using a computer-oriented (resolution) formal system. Linear resolution and its connection to the programming language Prolog are also treated. The computability component offers a machine model and mathematical model for computation, proves the equivalence of the two approaches, and includes famous decision problems unsolvable by an algorithm. The section on nonclassical logic discusses the shortcomings of classical logic in its treatment of implication and an alternate approach that improves upon it: Anderson and Belnap's relevance logic. Applications are included in each section. The material on a four-valued semantics for relevance logic is presented in textbook form for the first time. Aimed at upper-level undergraduates of moderate analytical background, Three Views of Logic will be useful in a variety of classroom settings. Gives an exceptionally broad view of logic Treats traditional logic in a modern format Presents relevance logic with applications Provides an ideal text for a variety of one-semester upper-level undergraduate courses

Semantics with Applications An Appetizer

Author: Hanne Riis Nielson
Publisher: Springer Science & Business Media
ISBN: 1846286921
Release Date: 2007-04-18
Genre: Computers

Semantics will play an important role in the future development of software systems and domain-specific languages. This book provides a needed introductory presentation of the fundamental ideas behind these approaches, stresses their relationship by formulating and proving the relevant theorems, and illustrates the applications of semantics in computer science. Historically important application areas are presented together with some exciting potential applications. The text investigates the relationship between various methods and describes some of the main ideas used, illustrating these by means of interesting applications. The book provides a rigorous introduction to the main approaches to formal semantics of programming languages.

A Logical Approach to Discrete Math

Author: David Gries
Publisher: Springer Science & Business Media
ISBN: 9781475738377
Release Date: 2013-03-14
Genre: Computers

Here, the authors strive to change the way logic and discrete math are taught in computer science and mathematics: while many books treat logic simply as another topic of study, this one is unique in its willingness to go one step further. The book traets logic as a basic tool which may be applied in essentially every other area.

Introduction to Software Quality

Author: Gerard O’Regan
Publisher: Springer
ISBN: 9783319061061
Release Date: 2014-05-22
Genre: Computers

This textbook describes the approaches used by software engineers to build quality into their software. The fundamental principles of software quality management and software process improvement are discussed in detail, with a particular focus on the CMMI framework. Features: includes review questions at the end of each chapter; covers both theory and practice, and provides guidance on applying the theory in an industrial environment; examines all aspects of the software development process, including project planning and tracking, software lifecycles, software inspections and testing, configuration management, and software quality assurance; provides detailed coverage of software metrics and problem solving; describes SCAMPI appraisals and how they form part of the continuous improvement cycle; presents an introduction to formal methods and the Z specification language; discusses UML, which is used to describe the architecture of the system; reviews the history of the field of software quality.