Special Relativity and Classical Field Theory

Author: Leonard Susskind
Publisher: Basic Books
ISBN: 9780465093359
Release Date: 2017-09-26
Genre: Science

The third volume in the bestselling physics series cracks open Einstein's special relativity and field theory Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.

The Theoretical Minimum

Author: Leonard Susskind
Publisher: Basic Books
ISBN: 9780465038923
Release Date: 2014-04-22
Genre: Science

A Wall Street Journal Best Book of 2013 If you ever regretted not taking physics in college--or simply want to know how to think like a physicist--this is the book for you. In this bestselling introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Challenging, lucid, and concise, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.

Quantum Mechanics

Author: Leonard Susskind
Publisher: Basic Books
ISBN: 9780465036677
Release Date: 2014-02-25
Genre: Science

From the bestselling author of The Theoretical Minimum, a DIY introduction to the math and science of quantum physics First he taught you classical mechanics. Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics. In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course. An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.

Classical Mechanics

Author: Leonard Susskind
ISBN: 0141976225
Release Date: 2014
Genre: Mechanics

This is the ultimate master class in modern physics. World-class physicist and father of string theory Leonard Susskind and citizen-scientist George Hrabovsky combine forces in a primer that teaches the skills you need to do physics yourself. Combining crystal-clear explanations of the laws of the universe with basic exercises (including essential equations and maths), the authors cover the minimum that readers should master. They introduce the key concepts of modern physics, from classical mechanics to general relativity to quantum theory, and provide a practical toolkit that you won't find in any other popular science book.

Special Relativity and Classical Field Theory

Author: Leonard Susskind
Publisher: Basic Books
ISBN: 1541674065
Release Date: 2019-05-07
Genre: Science

A funny, insightful, and self-contained guide to Einstein's relativity theory and classical field theories--including electromagnetism Physicist Leonard Susskind and data engineer Art Friedman are back. This time, they introduce readers to Einstein's special relativity and Maxwell's classical field theory. Using their typical brand of real math, enlightening drawings, and humor, Susskind and Friedman walk us through the complexities of waves, forces, and particles by exploring special relativity and electromagnetism. It's a must-read for both devotees of the series and any armchair physicist who wants to improve their knowledge of physics' deepest truths.

Quantum Field Theory for the Gifted Amateur

Author: Tom Lancaster
Publisher: Oxford University Press
ISBN: 9780199699322
Release Date: 2014-04
Genre: Science

Quantum field theory provides the theoretical backbone to most modern physics. This book is designed to bring quantum field theory to a wider audience of physicists. It is packed with worked examples, witty diagrams, and applications intended to introduce a new audience to this revolutionary theory.

Classical and Relativistic Mechanics

Author: David Agmon
Publisher: World Scientific Publishing Company
ISBN: 9789813101173
Release Date: 2009-06-30
Genre: Science

This book provides a calculus-based perspective on classical mechanics and the theory of relativity. Unlike most conventional textbooks, the discussion on theory is pared down to a minimum in favor of detailed, guided solutions of problems illustrating salient points, subtleties and principles. By working through the 900 carefully selected problems, the serious learner will hence be stimulated, challenged and enlightened. Great emphasis is placed on the pedagogical value of solving problems in a number of ways, on the careful and detailed analysis of problems, on dimensional considerations, and on basic principles underlying every topic treated. The book is aimed at first-year undergraduate students in physics and engineering. Advanced Placement students in high schools will also find this book rewarding and challenging. Instructors too will be able to recharge their batteries and refresh their reservoir of problems for recitation classes, or delve into it for their own amusement and edification.

Classical Field Theory

Author: Davison E. Soper
Publisher: Courier Dover Publications
ISBN: 9780486462608
Release Date: 2008-02-04
Genre: Science

This text concerns continuum mechanics, electrodynamics and the mechanics of electrically polarized media, and gravity. Geared toward advanced undergraduates and graduate students, it offers an accessible approach that formulates theories according to the principle of least action. The chief advantage of this formulation is its simplicity and ease, making the physical content of classical subjects available to students of physics in a concise form. Author Davison E. Soper, a Professor of Physics at the University of Oregon, intended this treatment as a primary text for courses in classical field theory as well as a supplement for courses in classical mechanics or classical electrodynamics. Topics include fields and transformation laws, the principle of stationary action, general features of classical field theory, the mechanics of fluids and elastic solids, special types of solids, nonrelativistic approximations, and the electromagnetic field. Additional subjects include electromagnetically polarized materials, gravity, momentum conservation in general relativity, and dissipative processes.

The Cosmic Landscape

Author: Leonard Susskind
Publisher: Back Bay Books
ISBN: 9780316055581
Release Date: 2008-12-14
Genre: Science

In his first book ever, the father of string theory reinvents the world's concept of the known universe and man's unique place within it. Line drawings.

Problems and Solutions in Special Relativity and Electromagnetism

Author: Sergei Kruchinin
Publisher: World Scientific Publishing Company
ISBN: 9789813227293
Release Date: 2017-07-27
Genre: Science

Field theory is an important topic in theoretical physics, which is studied in the physical and physico-mathematical departments of universities. Therefore, lecturers are faced with the urgent task of not only providing students with information about the subject, but also to help them master the material at a deep qualitative level, by presenting the specific features of general approaches to the statement and the solution of problems in theoretical physics. One of the ways to study field theory is the practical one, where the students can deepen their knowledge of the theoretical material and develop problem-solving skills. This book includes a concise theoretical summary of the main branches of field theory and electrodynamics, worked examples, and some problems for the student to solve. The book is written for students of theoretical and applied physics, and corresponds to the curricula of the theoretical courses "Field theory" and "Electrodynamics" for physics undergraduates. It can also be useful for students of other disciplines, in particular, those in which physics is one of the base subjects. Request Inspection Copy Contents: ForewordIntroductionVector and Tensor AnalysesElements of the Special Theory of RelativityRelativistic MechanicsConstant Electric and Magnetic Fields in VacuumElectromagnetic WavesField of Moving ChargesEmission of Electromagnetic Waves Readership: Teachers and students of theoretical physics at advanced undergraduate level.

From Special Relativity to Feynman Diagrams

Author: Riccardo D'Auria
Publisher: Springer
ISBN: 9783319220147
Release Date: 2015-10-06
Genre: Science

This book, now in its second edition, provides an introductory course on theoretical particle physics with the aim of filling the gap that exists between basic courses of classical and quantum mechanics and advanced courses of (relativistic) quantum mechanics and field theory. After a concise but comprehensive introduction to special relativity, key aspects of relativistic dynamics are covered and some elementary concepts of general relativity introduced. Basics of the theory of groups and Lie algebras are explained, with discussion of the group of rotations and the Lorentz and Poincaré groups. In addition, a concise account of representation theory and of tensor calculus is provided. Quantization of the electromagnetic field in the radiation range is fully discussed. The essentials of the Lagrangian and Hamiltonian formalisms are reviewed, proceeding from systems with a finite number of degrees of freedom and extending the discussion to fields. The final four chapters are devoted to development of the quantum field theory, ultimately introducing the graphical description of interaction processes by means of Feynman diagrams. The book will be of value for students seeking to understand the main concepts that form the basis of contemporary theoretical particle physics and also for engineers and lecturers. An Appendix on some special relativity effects is added.

Introduction to Special Relativity

Author: James Hammond Smith
Publisher: Courier Corporation
ISBN: 9780486688954
Release Date: 1965
Genre: Science

Concise, well-written treatment of epochal theory of modern physics covers classical relativity and the relativity postulate, time dilation, the twin paradox, momentum and energy, particles of zero mass, electric and magnetic fields and forces and more. Only high school math needed. Replete with examples, ideal for self-study. Introduction. 70 illustrations.


Author: Wolfgang Rindler
Publisher: Oxford University Press on Demand
ISBN: 9780198567318
Release Date: 2006-04-06
Genre: Science

This text brings the challenge and excitement of modern relativity and cosmology at rigorous mathematical level within reach of advanced undergraduates and beginning graduates.

Einstein Gravity in a Nutshell

Author: A. Zee
Publisher: Princeton University Press
ISBN: 9781400847457
Release Date: 2013-05-05
Genre: Science

This unique textbook provides an accessible introduction to Einstein's general theory of relativity, a subject of breathtaking beauty and supreme importance in physics. With his trademark blend of wit and incisiveness, A. Zee guides readers from the fundamentals of Newtonian mechanics to the most exciting frontiers of research today, including de Sitter and anti-de Sitter spacetimes, Kaluza-Klein theory, and brane worlds. Unlike other books on Einstein gravity, this book emphasizes the action principle and group theory as guides in constructing physical theories. Zee treats various topics in a spiral style that is easy on beginners, and includes anecdotes from the history of physics that will appeal to students and experts alike. He takes a friendly approach to the required mathematics, yet does not shy away from more advanced mathematical topics such as differential forms. The extensive discussion of black holes includes rotating and extremal black holes and Hawking radiation. The ideal textbook for undergraduate and graduate students, Einstein Gravity in a Nutshell also provides an essential resource for professional physicists and is accessible to anyone familiar with classical mechanics and electromagnetism. It features numerous exercises as well as detailed appendices covering a multitude of topics not readily found elsewhere. Provides an accessible introduction to Einstein's general theory of relativity Guides readers from Newtonian mechanics to the frontiers of modern research Emphasizes symmetry and the Einstein-Hilbert action Covers topics not found in standard textbooks on Einstein gravity Includes interesting historical asides Features numerous exercises and detailed appendices Ideal for students, physicists, and scientifically minded lay readers Solutions manual (available only to teachers)

Lectures on Quantum Mechanics and Relativistic Field Theory

Author: P.A.M. Dirac
Publisher: Martino Fine Books
ISBN: 1614273340
Release Date: 2012-07-01
Genre: Science

2012 Reprint of 1955 Edition. Exact facsimile of the original edition, not reproduced with Optical Recognition Software. Dirac is widely regarded as one of the world's greatest physicists. He was one of the founders of quantum mechanics and quantum electrodynamics. His early contributions include the modern operator calculus for quantum mechanics, which he called transformation theory, and an early version of the path integral. His relativistic wave equation for the electron was the first successful attack on the problem of relativistic quantum mechanics. Dirac founded quantum field theory with his reinterpretation of the Dirac equation as a many-body equation, which predicted the existence of antimatter and matter-antimatter annihilation. He was the first to formulate quantum electrodynamics, although he could not calculate arbitrary quantities because the short distance limit requires renormalization. Dirac discovered the magnetic monopole solutions, the first topological configuration in physics, and used them to give the modern explanation of charge quantization. He developed constrained quantization in the 1960s, identifying the general quantum rules for arbitrary classical systems. These lectures were given delivered and published during his tenure at Princeton's Institute for Advanced Study in the 1930's.