Statistical Decision Theory and Bayesian Analysis

Author: James O. Berger
Publisher: Springer Science & Business Media
ISBN: 9781475742862
Release Date: 2013-03-14
Genre: Mathematics

In this new edition the author has added substantial material on Bayesian analysis, including lengthy new sections on such important topics as empirical and hierarchical Bayes analysis, Bayesian calculation, Bayesian communication, and group decision making. With these changes, the book can be used as a self-contained introduction to Bayesian analysis. In addition, much of the decision-theoretic portion of the text was updated, including new sections covering such modern topics as minimax multivariate (Stein) estimation.

Frontiers of Statistical Decision Making and Bayesian Analysis

Author: Ming-Hui Chen
Publisher: Springer Science & Business Media
ISBN: 1441969446
Release Date: 2010-07-24
Genre: Mathematics

Research in Bayesian analysis and statistical decision theory is rapidly expanding and diversifying, making it increasingly more difficult for any single researcher to stay up to date on all current research frontiers. This book provides a review of current research challenges and opportunities. While the book can not exhaustively cover all current research areas, it does include some exemplary discussion of most research frontiers. Topics include objective Bayesian inference, shrinkage estimation and other decision based estimation, model selection and testing, nonparametric Bayes, the interface of Bayesian and frequentist inference, data mining and machine learning, methods for categorical and spatio-temporal data analysis and posterior simulation methods. Several major application areas are covered: computer models, Bayesian clinical trial design, epidemiology, phylogenetics, bioinformatics, climate modeling and applications in political science, finance and marketing. As a review of current research in Bayesian analysis the book presents a balance between theory and applications. The lack of a clear demarcation between theoretical and applied research is a reflection of the highly interdisciplinary and often applied nature of research in Bayesian statistics. The book is intended as an update for researchers in Bayesian statistics, including non-statisticians who make use of Bayesian inference to address substantive research questions in other fields. It would also be useful for graduate students and research scholars in statistics or biostatistics who wish to acquaint themselves with current research frontiers.

Statistical Decision Theory

Author: James Berger
Publisher: Springer Science & Business Media
ISBN: 9781475717273
Release Date: 2013-04-17
Genre: Mathematics

Decision theory is generally taught in one of two very different ways. When of opti taught by theoretical statisticians, it tends to be presented as a set of mathematical techniques mality principles, together with a collection of various statistical procedures. When useful in establishing the optimality taught by applied decision theorists, it is usually a course in Bayesian analysis, showing how this one decision principle can be applied in various practical situations. The original goal I had in writing this book was to find some middle ground. I wanted a book which discussed the more theoretical ideas and techniques of decision theory, but in a manner that was constantly oriented towards solving statistical problems. In particular, it seemed crucial to include a discussion of when and why the various decision prin ciples should be used, and indeed why decision theory is needed at all. This original goal seemed indicated by my philosophical position at the time, which can best be described as basically neutral. I felt that no one approach to decision theory (or statistics) was clearly superior to the others, and so planned a rather low key and impartial presentation of the competing ideas. In the course of writing the book, however, I turned into a rabid Bayesian. There was no single cause for this conversion; just a gradual realization that things seemed to ultimately make sense only when looked at from the Bayesian viewpoint.

Modeling in medical decision making

Author: Giovanni Parmigiani
Publisher: Wiley
ISBN: 0471986089
Release Date: 2002
Genre: Mathematics

Medical decision making has evolved in recent years, as more complex problems are being faced and addressed based on increasingly large amounts of data. In parallel, advances in computing have led to a host of new and powerful statistical tools to support decision making. Simulation-based Bayesian methods are especially promising, as they provide a unified framework for data collection, inference, and decision making. In addition, these methods are simple to interpret, and can help to address the most pressing practical and ethical concerns arising in medical decision making. * Provides an overview of the necessary methodological background, including Bayesian inference, Monte Carlo simulation, and utility theory. * Driven by three real applications, presented as extensively detailed case studies. * Case studies include simplified versions of the analysis, to approach complex modelling in stages. * Features coverage of meta-analysis, decision analysis, and comprehensive decision modeling. * Accessible to readers with only a basic statistical knowledge. Primarily aimed at students and practitioners of biostatistics, the book will also appeal to those working in statistics, medical informatics, evidence-based medicine, health economics, health services research, and health policy.

Introduction to Statistical Decision Theory

Author: John Winsor Pratt
Publisher: MIT Press
ISBN: 0262161443
Release Date: 1995
Genre: Business & Economics

Unlike most introductory texts in statistics, Introduction toStatistical Decision Theory integrates statistical inference withdecision making and discusses real-world actions involving economic payoffs and risks.

The Bayesian Choice

Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 9780387715988
Release Date: 2007-08-27
Genre: Mathematics

This is an introduction to Bayesian statistics and decision theory, including advanced topics such as Monte Carlo methods. This new edition contains several revised chapters and a new chapter on model choice.

Statistical Decision Theory and Related Topics III

Author: Shanti S. Gupta
Publisher: Academic Press
ISBN: 9781483259550
Release Date: 2014-05-10
Genre: Mathematics

Statistical Decision Theory and Related Topics III, Volume 2 is a collection of papers presented at the Third Purdue Symposium on Statistical Decision Theory and Related Topics, held at Purdue University in June 1981. The symposium brought together many prominent leaders and a number of younger researchers in statistical decision theory and related areas. This volume contains the research papers presented at the symposium and includes works on general decision theory, multiple decision theory, optimum experimental design, sequential and adaptive inference, Bayesian analysis, robustness, and large sample theory. These research areas have seen rapid developments since the preceding Purdue Symposium in 1976, developments reflected by the variety and depth of the works in this volume. Statisticians and mathematicians will find the book very insightful.

Decision Theory

Author: Giovanni Parmigiani
Publisher: John Wiley & Sons
ISBN: 9780470746677
Release Date: 2009-04-15
Genre: Mathematics

Decision theory provides a formal framework for making logical choices in the face of uncertainty. Given a set of alternatives, a set of consequences, and a correspondence between those sets, decision theory offers conceptually simple procedures for choice. This book presents an overview of the fundamental concepts and outcomes of rational decision making under uncertainty, highlighting the implications for statistical practice. The authors have developed a series of self contained chapters focusing on bridging the gaps between the different fields that have contributed to rational decision making and presenting ideas in a unified framework and notation while respecting and highlighting the different and sometimes conflicting perspectives. This book: Provides a rich collection of techniques and procedures. Discusses the foundational aspects and modern day practice. Links foundations to practical applications in biostatistics, computer science, engineering and economics. Presents different perspectives and controversies to encourage readers to form their own opinion of decision making and statistics. Decision Theory is fundamental to all scientific disciplines, including biostatistics, computer science, economics and engineering. Anyone interested in the whys and wherefores of statistical science will find much to enjoy in this book.

Contemporary Bayesian Econometrics and Statistics

Author: John Geweke
Publisher: John Wiley & Sons
ISBN: 9780471744726
Release Date: 2005-10-03
Genre: Mathematics

Tools to improve decision making in an imperfect world This publication provides readers with a thorough understanding ofBayesian analysis that is grounded in the theory of inference andoptimal decision making. Contemporary Bayesian Econometrics andStatistics provides readers with state-of-the-art simulationmethods and models that are used to solve complex real-worldproblems. Armed with a strong foundation in both theory andpractical problem-solving tools, readers discover how to optimizedecision making when faced with problems that involve limited orimperfect data. The book begins by examining the theoretical and mathematicalfoundations of Bayesian statistics to help readers understand howand why it is used in problem solving. The author then describeshow modern simulation methods make Bayesian approaches practicalusing widely available mathematical applications software. Inaddition, the author details how models can be applied to specificproblems, including: * Linear models and policy choices * Modeling with latent variables and missing data * Time series models and prediction * Comparison and evaluation of models The publication has been developed and fine- tuned through a decadeof classroom experience, and readers will find the author'sapproach very engaging and accessible. There are nearly 200examples and exercises to help readers see how effective use ofBayesian statistics enables them to make optimal decisions. MATLAB?and R computer programs are integrated throughout the book. Anaccompanying Web site provides readers with computer code for manyexamples and datasets. This publication is tailored for research professionals who useeconometrics and similar statistical methods in their work. Withits emphasis on practical problem solving and extensive use ofexamples and exercises, this is also an excellent textbook forgraduate-level students in a broad range of fields, includingeconomics, statistics, the social sciences, business, and publicpolicy.

An Introduction to Bayesian Analysis

Author: Jayanta K. Ghosh
Publisher: Springer Science & Business Media
ISBN: 9780387354330
Release Date: 2007-07-03
Genre: Mathematics

This is a graduate-level textbook on Bayesian analysis blending modern Bayesian theory, methods, and applications. Starting from basic statistics, undergraduate calculus and linear algebra, ideas of both subjective and objective Bayesian analysis are developed to a level where real-life data can be analyzed using the current techniques of statistical computing. Advances in both low-dimensional and high-dimensional problems are covered, as well as important topics such as empirical Bayes and hierarchical Bayes methods and Markov chain Monte Carlo (MCMC) techniques. Many topics are at the cutting edge of statistical research. Solutions to common inference problems appear throughout the text along with discussion of what prior to choose. There is a discussion of elicitation of a subjective prior as well as the motivation, applicability, and limitations of objective priors. By way of important applications the book presents microarrays, nonparametric regression via wavelets as well as DMA mixtures of normals, and spatial analysis with illustrations using simulated and real data. Theoretical topics at the cutting edge include high-dimensional model selection and Intrinsic Bayes Factors, which the authors have successfully applied to geological mapping. The style is informal but clear. Asymptotics is used to supplement simulation or understand some aspects of the posterior.

Bayesian Theory

Author: José M. Bernardo
Publisher: John Wiley & Sons
ISBN: 9780470317716
Release Date: 2009-09-25
Genre: Mathematics

This highly acclaimed text, now available in paperback, provides a thorough account of key concepts and theoretical results, with particular emphasis on viewing statistical inference as a special case of decision theory. Information-theoretic concepts play a central role in the development of the theory, which provides, in particular, a detailed discussion of the problem of specification of so-called prior ignorance . The work is written from the authors s committed Bayesian perspective, but an overview of non-Bayesian theories is also provided, and each chapter contains a wide-ranging critical re-examination of controversial issues. The level of mathematics used is such that most material is accessible to readers with knowledge of advanced calculus. In particular, no knowledge of abstract measure theory is assumed, and the emphasis throughout is on statistical concepts rather than rigorous mathematics. The book will be an ideal source for all students and researchers in statistics, mathematics, decision analysis, economic and business studies, and all branches of science and engineering, who wish to further their understanding of Bayesian statistics

Statistical Decision Theory and Related Topics IV

Author: Shanti S. Gupta
Publisher: Springer
ISBN: 1461387701
Release Date: 2011-11-08
Genre: Mathematics

The Fourth Purdue Symposium on Statistical Decision Theory and Related Topics was held at Purdue University during the period June 15-20, 1986. The symposium brought together many prominent leaders and younger researchers in statistical decision theory and related areas. The 65 invited papers and discussions presented at the symposium are collected in this two-volume work. The papers are grouped into a total of seven parts. Volume I has three parts: Part 1 -Conditioning and Likelihood; Part f! - Bayes and Empirical Bayes Analysis; and Part 9 -Decision Theoretic Estimation. Part 1 contains the proceedings of a Workshop on Conditioning, which was held during the symposium. Most of the articles in Volume I involve either conditioning or Bayesian ideas, resulting in a volume of considerable interest to conditionalists and Bayesians as well as to decision-theorists. Volume II has four parts: Part 1 -Selection, Ranking, and Multiple Com parisons; fart f! -Asymptotic and Sequential Analysis; Part 9 -Estimation and Testing; and Part -4 -Design and Comparison of Experiments and Distributions. These articles encompass the leading edge of much current research in math ematical statistics, with decision theory, of course, receiving special emphasis. It should be noted that the papers in these two volumes are by no means all theoretical; many are applied in nature or are creative review papers.

Fuzzy Statistical Decision Making

Author: Cengiz Kahraman
Publisher: Springer
ISBN: 9783319390147
Release Date: 2016-07-15
Genre: Computers

This book offers a comprehensive reference guide to fuzzy statistics and fuzzy decision-making techniques. It provides readers with all the necessary tools for making statistical inference in the case of incomplete information or insufficient data, where classical statistics cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including: fuzzy probability distributions, fuzzy frequency distributions, fuzzy Bayesian inference, fuzzy mean, mode and median, fuzzy dispersion, fuzzy p-value, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on fuzzy statistics. Moreover, by extending all the main aspects of classical statistical decision-making to its fuzzy counterpart, the book presents a dynamic snapshot of the field that is expected to stimulate new directions, ideas and developments.