Statistics for Spatio Temporal Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9781119243045
Release Date: 2015-11-02
Genre: Mathematics

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Statistics for Spatio Temporal Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9781119243069
Release Date: 2015-11-02
Genre: Mathematics

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes, bridging classic ideas with modern hierarchical statistical modeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winners of the 2011 PROSE Award in the Mathematics category, for the book “Statistics for Spatio-Temporal Data” (2011), published by John Wiley and Sons. (The PROSE awards, for Professional and Scholarly Excellence, are given by the Association of American Publishers, the national trade association of the US book publishing industry.) Statistics for Spatio-Temporal Data has now been reprinted with small corrections to the text and the bibliography. The overall content and pagination of the new printing remains the same; the difference comes in the form of corrections to typographical errors, editing of incomplete and missing references, and some updated spatio-temporal interpretations. From understanding environmental processes and climate trends to developing new technologies for mapping public-health data and the spread of invasive-species, there is a high demand for statistical analyses of data that take spatial, temporal, and spatio-temporal information into account. Statistics for Spatio-Temporal Data presents a systematic approach to key quantitative techniques that incorporate the latest advances in statistical computing as well as hierarchical, particularly Bayesian, statistical modeling, with an emphasis on dynamical spatio-temporal models. Cressie and Wikle supply a unique presentation that incorporates ideas from the areas of time series and spatial statistics as well as stochastic processes. Beginning with separate treatments of temporal data and spatial data, the book combines these concepts to discuss spatio-temporal statistical methods for understanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, including visualization, spectral analysis, empirical orthogonal function analysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging, and time series of spatial processes Development of hierarchical dynamical spatio-temporal models (DSTMs), with discussion of linear and nonlinear DSTMs and computational algorithms for their implementation Quantifying and exploring spatio-temporal variability in scientific applications, including case studies based on real-world environmental data Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material. Statistics for Spatio-Temporal Data is an excellent book for a graduate-level course on spatio-temporal statistics. It is also a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Statistics for Spatio Temporal Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9780471692744
Release Date: 2011-05-03
Genre: Mathematics

Throughout the book, interesting applications demonstrate the relevance of the presented concepts. Vivid, full-color graphics emphasize the visual nature of the topic, and a related FTP site contains supplementary material.

Spatial Statistics and Spatio Temporal Data

Author: Michael Sherman
Publisher: John Wiley & Sons
ISBN: 0470974923
Release Date: 2011-01-06
Genre: Mathematics

In the spatial or spatio-temporal context, specifying the correct covariance function is fundamental to obtain efficient predictions, and to understand the underlying physical process of interest. This book focuses on covariance and variogram functions, their role in prediction, and appropriate choice of these functions in applications. Both recent and more established methods are illustrated to assess many common assumptions on these functions, such as, isotropy, separability, symmetry, and intrinsic correlation. After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures. Key features: An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given. Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings. Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods. Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures. Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings. Gives an introduction to point pattern models, including testing for randomness, and fitting regular and clustered point patterns. The importance and assessment of isotropy of point patterns is detailed. Statisticians, researchers, and data analysts working with spatial and space-time data will benefit from this book as well as will graduate students with a background in basic statistics following courses in engineering, quantitative ecology or atmospheric science.

Statistical Methods for Spatio Temporal Systems

Author: Barbel Finkenstadt
Publisher: CRC Press
ISBN: 9781420011050
Release Date: 2006-10-20
Genre: Mathematics

Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time covariance functions. The contributors then describe stochastic and statistical models that are used to generate simulated rainfall sequences for hydrological use, such as flood risk assessment. The final chapter explores Gaussian Markov random field specifications and Bayesian computational inference via Gibbs sampling and Markov chain Monte Carlo, illustrating the methods with a variety of data examples, such as temperature surfaces, dioxin concentrations, ozone concentrations, and a well-established deterministic dynamical weather model.

Spatial and Spatio Temporal Geostatistical Modeling and Kriging

Author: Jos?-Mar?a Montero
Publisher: John Wiley & Sons
ISBN: 9781118762431
Release Date: 2015-08-18
Genre: Mathematics

Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples

Spatio temporal Design

Author: Jorge Mateu
Publisher: John Wiley & Sons
ISBN: 9781118441886
Release Date: 2012-11-05
Genre: Mathematics

A state-of-the-art presentation of optimum spatio-temporal sampling design - bridging classic ideas with modern statistical modeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensive state-of-the-art presentation combining both classical and modern treatments of network design and planning for spatial and spatio-temporal data acquisition. A common problem set is interwoven throughout the chapters, providing various perspectives to illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of data that takes spatial and spatio-temporal information into account, this book incorporates ideas from the areas of time series, spatial statistics and stochastic processes, and combines them to discuss optimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient Data Acquisition: Provides an up-to-date account of how to collect space-time data for monitoring, with a focus on statistical aspects and the latest computational methods Discusses basic methods and distinguishes between design and model-based approaches to collecting space-time data. Features model-based frequentist design for univariate and multivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout the book in order to demonstrate the different approaches and their integration. Includes real data sets, data generating mechanisms and simulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book for graduate level students as well as a valuable reference for researchers and practitioners in the fields of applied mathematics, engineering, and the environmental and health sciences.

Statistics for Spatial Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9781119115182
Release Date: 2015-03-18
Genre: Mathematics

The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.

Spatiotemporal Data Analysis

Author: Gidon Eshel
Publisher: Princeton University Press
ISBN: 9780691128917
Release Date: 2012
Genre: Mathematics

A severe thunderstorm morphs into a tornado that cuts a swath of destruction through Oklahoma. How do we study the storm's mutation into a deadly twister? Avian flu cases are reported in China. How do we characterize the spread of the flu, potentially preventing an epidemic? The way to answer important questions like these is to analyze the spatial and temporal characteristics--origin, rates, and frequencies--of these phenomena. This comprehensive text introduces advanced undergraduate students, graduate students, and researchers to the statistical and algebraic methods used to analyze spatiotemporal data in a range of fields, including climate science, geophysics, ecology, astrophysics, and medicine. Gidon Eshel begins with a concise yet detailed primer on linear algebra, providing readers with the mathematical foundations needed for data analysis. He then fully explains the theory and methods for analyzing spatiotemporal data, guiding readers from the basics to the most advanced applications. This self-contained, practical guide to the analysis of multidimensional data sets features a wealth of real-world examples as well as sample homework exercises and suggested exams.

Spatio Temporal Methods in Environmental Epidemiology

Author: Gavin Shaddick
Publisher: CRC Press
ISBN: 9781482237047
Release Date: 2015-06-17
Genre: Mathematics

Teaches Students How to Perform Spatio-Temporal Analyses within Epidemiological Studies Spatio-Temporal Methods in Environmental Epidemiology is the first book of its kind to specifically address the interface between environmental epidemiology and spatio-temporal modeling. In response to the growing need for collaboration between statisticians and environmental epidemiologists, the book links recent developments in spatio-temporal methodology with epidemiological applications. Drawing on real-life problems, it provides the necessary tools to exploit advances in methodology when assessing the health risks associated with environmental hazards. The book’s clear guidelines enable the implementation of the methodology and estimation of risks in practice. Designed for graduate students in both epidemiology and statistics, the text covers a wide range of topics, from an introduction to epidemiological principles and the foundations of spatio-temporal modeling to new research directions. It describes traditional and Bayesian approaches and presents the theory of spatial, temporal, and spatio-temporal modeling in the context of its application to environmental epidemiology. The text includes practical examples together with embedded R code, details of specific R packages, and the use of other software, such as WinBUGS/OpenBUGS and integrated nested Laplace approximations (INLA). A supplementary website provides additional code, data, examples, exercises, lab projects, and more. Representing a major new direction in environmental epidemiology, this book—in full color throughout—underscores the increasing need to consider dependencies in both space and time when modeling epidemiological data. Students will learn how to identify and model patterns in spatio-temporal data as well as exploit dependencies over space and time to reduce bias and inefficiency.

Spatial and Spatio temporal Bayesian Models with R INLA

Author: Marta Blangiardo
Publisher: John Wiley & Sons
ISBN: 9781118950210
Release Date: 2015-03-26
Genre: Mathematics

Spatial and Spatio-Temporal Bayesian Models with R-INLA provides a much needed, practically oriented & innovative presentation of the combination of Bayesian methodology and spatial statistics. The authors combine an introduction to Bayesian theory and methodology with a focus on the spatial and spatio­-temporal models used within the Bayesian framework and a series of practical examples which allow the reader to link the statistical theory presented to real data problems. The numerous examples from the fields of epidemiology, biostatistics and social science all are coded in the R package R-INLA, which has proven to be a valid alternative to the commonly used Markov Chain Monte Carlo simulations

Modeling Conflict Dynamics with Spatio temporal Data

Author: Andrew Zammit-Mangion
Publisher: Springer Science & Business Media
ISBN: 9783319010380
Release Date: 2013-09-30
Genre: Science

This authored monograph presents the use of dynamic spatiotemporal modeling tools for the identification of complex underlying processes in conflict, such as diffusion, relocation, heterogeneous escalation, and volatility. The authors use ideas from statistics, signal processing, and ecology, and provide a predictive framework which is able to assimilate data and give confidence estimates on the predictions. The book also demonstrates the methods on the WikiLeaks Afghan War Diary, the results showing that this approach allows deeper insights into conflict dynamics and allows a strikingly statistically accurate forward prediction of armed opposition group activity in 2010, based solely on data from preceding years. The target audience primarily comprises researchers and practitioners in the involved fields but the book may also be beneficial for graduate students.

Handbook of Spatial Statistics

Author: Alan E. Gelfand
Publisher: CRC Press
ISBN: 1420072889
Release Date: 2010-03-19
Genre: Mathematics

Assembling a collection of very prominent researchers in the field, the Handbook of Spatial Statistics presents a comprehensive treatment of both classical and state-of-the-art aspects of this maturing area. It takes a unified, integrated approach to the material, providing cross-references among chapters. The handbook begins with a historical introduction detailing the evolution of the field. It then focuses on the three main branches of spatial statistics: continuous spatial variation (point referenced data); discrete spatial variation, including lattice and areal unit data; and spatial point patterns. The book also contains a section on space–time work as well as a section on important topics that build upon earlier chapters. By collecting the major work in the field in one source, along with including an extensive bibliography, this handbook will assist future research efforts. It deftly balances theory and application, strongly emphasizes modeling, and introduces many real data analysis examples.