Statistics for Spatio Temporal Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9781119243045
Release Date: 2015-11-02
Genre: Mathematics

Winner of the 2013 DeGroot Prize. A state-of-the-art presentation of spatio-temporal processes,bridging classic ideas with modern hierarchical statisticalmodeling concepts and the latest computational methods Noel Cressie and Christopher K. Wikle, are also winnersof the 2011 PROSE Award in the Mathematics category, for thebook “Statistics for Spatio-Temporal Data” (2011),published by John Wiley and Sons. (The PROSE awards, forProfessional and Scholarly Excellence, are given by the Associationof American Publishers, the national trade association of the USbook publishing industry.) Statistics for Spatio-Temporal Data has now beenreprinted with small corrections to the text andthe bibliography. The overall content and pagination of thenew printing remains the same; the difference comes inthe form of corrections to typographical errors, editing ofincomplete and missing references, and some updated spatio-temporalinterpretations. From understanding environmental processes and climate trends todeveloping new technologies for mapping public-health data and thespread of invasive-species, there is a high demand for statisticalanalyses of data that take spatial, temporal, and spatio-temporalinformation into account. Statistics for Spatio-TemporalData presents a systematic approach to key quantitativetechniques that incorporate the latest advances in statisticalcomputing as well as hierarchical, particularly Bayesian,statistical modeling, with an emphasis on dynamical spatio-temporalmodels. Cressie and Wikle supply a unique presentation thatincorporates ideas from the areas of time series and spatialstatistics as well as stochastic processes. Beginning with separatetreatments of temporal data and spatial data, the book combinesthese concepts to discuss spatio-temporal statistical methods forunderstanding complex processes. Topics of coverage include: Exploratory methods for spatio-temporal data, includingvisualization, spectral analysis, empirical orthogonal functionanalysis, and LISAs Spatio-temporal covariance functions, spatio-temporal kriging,and time series of spatial processes Development of hierarchical dynamical spatio-temporal models(DSTMs), with discussion of linear and nonlinear DSTMs andcomputational algorithms for their implementation Quantifying and exploring spatio-temporal variability inscientific applications, including case studies based on real-worldenvironmental data Throughout the book, interesting applications demonstrate therelevance of the presented concepts. Vivid, full-color graphicsemphasize the visual nature of the topic, and a related FTP sitecontains supplementary material. Statistics for Spatio-TemporalData is an excellent book for a graduate-level course onspatio-temporal statistics. It is also a valuable reference forresearchers and practitioners in the fields of applied mathematics,engineering, and the environmental and health sciences.

Spatial Statistics and Spatio Temporal Data

Author: Michael Sherman
Publisher: John Wiley & Sons
ISBN: 0470974923
Release Date: 2011-01-06
Genre: Mathematics

In the spatial or spatio-temporal context, specifying the correct covariance function is fundamental to obtain efficient predictions, and to understand the underlying physical process of interest. This book focuses on covariance and variogram functions, their role in prediction, and appropriate choice of these functions in applications. Both recent and more established methods are illustrated to assess many common assumptions on these functions, such as, isotropy, separability, symmetry, and intrinsic correlation. After an extensive introduction to spatial methodology, the book details the effects of common covariance assumptions and addresses methods to assess the appropriateness of such assumptions for various data structures. Key features: An extensive introduction to spatial methodology including a survey of spatial covariance functions and their use in spatial prediction (kriging) is given. Explores methodology for assessing the appropriateness of assumptions on covariance functions in the spatial, spatio-temporal, multivariate spatial, and point pattern settings. Provides illustrations of all methods based on data and simulation experiments to demonstrate all methodology and guide to proper usage of all methods. Presents a brief survey of spatial and spatio-temporal models, highlighting the Gaussian case and the binary data setting, along with the different methodologies for estimation and model fitting for these two data structures. Discusses models that allow for anisotropic and nonseparable behaviour in covariance functions in the spatial, spatio-temporal and multivariate settings. Gives an introduction to point pattern models, including testing for randomness, and fitting regular and clustered point patterns. The importance and assessment of isotropy of point patterns is detailed. Statisticians, researchers, and data analysts working with spatial and space-time data will benefit from this book as well as will graduate students with a background in basic statistics following courses in engineering, quantitative ecology or atmospheric science.

Spatial and Spatio Temporal Geostatistical Modeling and Kriging

Author: Gema Fernández-Avilés
Publisher: John Wiley & Sons
ISBN: 9781118413180
Release Date: 2015-08-17
Genre: Mathematics

Statistical Methods for Spatial and Spatio-Temporal Data Analysis provides a complete range of spatio-temporal covariance functions and discusses ways of constructing them. This book is a unified approach to modeling spatial and spatio-temporal data together with significant developments in statistical methodology with applications in R. This book includes: Methods for selecting valid covariance functions from the empirical counterparts that overcome the existing limitations of the traditional methods. The most innovative developments in the different steps of the kriging process. An up-to-date account of strategies for dealing with data evolving in space and time. An accompanying website featuring R code and examples

Wahrscheinlichkeitsrechnung und Statistik

Author: Robert Hafner
Publisher: Springer-Verlag
ISBN: 9783709169445
Release Date: 2013-03-11
Genre: Mathematics

Das Buch ist eine Einführung in die Wahrscheinlichkeitsrechnung und mathematische Statistik auf mittlerem mathematischen Niveau. Die Pädagogik der Darstellung unterscheidet sich in wesentlichen Teilen – Einführung der Modelle für unabhängige und abhängige Experimente, Darstellung des Suffizienzbegriffes, Ausführung des Zusammenhanges zwischen Testtheorie und Theorie der Bereichschätzung, allgemeine Diskussion der Modellentwicklung – erheblich von der anderer vergleichbarer Lehrbücher. Die Darstellung ist, soweit auf diesem Niveau möglich, mathematisch exakt, verzichtet aber bewußt und ebenfalls im Gegensatz zu vergleichbaren Texten auf die Erörterung von Meßbarkeitsfragen. Der Leser wird dadurch erheblich entlastet, ohne daß wesentliche Substanz verlorengeht. Das Buch will allen, die an der Anwendung der Statistik auf solider Grundlage interessiert sind, eine Einführung bieten, und richtet sich an Studierende und Dozenten aller Studienrichtungen, für die mathematische Statistik ein Werkzeug ist.

Mathematische Statistik

Author: Bartel L. van der Waerden
Publisher: Springer-Verlag
ISBN: 9783642649745
Release Date: 2013-03-12
Genre: Mathematics

Spatio temporal Design

Author: Jorge Mateu
Publisher: John Wiley & Sons
ISBN: 9781118441886
Release Date: 2012-11-05
Genre: Mathematics

A state-of-the-art presentation of optimum spatio-temporalsampling design - bridging classic ideas with modern statisticalmodeling concepts and the latest computational methods. Spatio-temporal Design presents a comprehensivestate-of-the-art presentation combining both classical and moderntreatments of network design and planning for spatial andspatio-temporal data acquisition. A common problem set isinterwoven throughout the chapters, providing various perspectivesto illustrate a complete insight to the problem at hand. Motivated by the high demand for statistical analysis of datathat takes spatial and spatio-temporal information into account,this book incorporates ideas from the areas of time series, spatialstatistics and stochastic processes, and combines them to discussoptimum spatio-temporal sampling design. Spatio-temporal Design: Advances in Efficient DataAcquisition: Provides an up-to-date account of how to collect space-timedata for monitoring, with a focus on statistical aspects and thelatest computational methods Discusses basic methods and distinguishes between design andmodel-based approaches to collecting space-time data. Features model-based frequentist design for univariate andmultivariate geostatistics, and second-phase spatial sampling. Integrates common data examples and case studies throughout thebook in order to demonstrate the different approaches and theirintegration. Includes real data sets, data generating mechanisms andsimulation scenarios. Accompanied by a supporting website featuring R code. Spatio-temporal Design presents an excellent book forgraduate level students as well as a valuable reference forresearchers and practitioners in the fields of applied mathematics,engineering, and the environmental and health sciences.

Statistical Analysis of Spatial and Spatio Temporal Point Patterns Third Edition

Author: Peter J. Diggle
Publisher: CRC Press
ISBN: 9781466560246
Release Date: 2013-07-23
Genre: Mathematics

Written by a prominent statistician and author, the first edition of this bestseller broke new ground in the then emerging subject of spatial statistics with its coverage of spatial point patterns. Retaining all the material from the second edition and adding substantial new material, Statistical Analysis of Spatial and Spatio-Temporal Point Patterns, Third Edition presents models and statistical methods for analyzing spatially referenced point process data. Reflected in the title, this third edition now covers spatio-temporal point patterns. It explores the methodological developments from the last decade along with diverse applications that use spatio-temporally indexed data. Practical examples illustrate how the methods are applied to analyze spatial data in the life sciences. This edition also incorporates the use of R through several packages dedicated to the analysis of spatial point process data. Sample R code and data sets are available on the author’s website.

Statistics for Spatial Data

Author: Noel Cressie
Publisher: John Wiley & Sons
ISBN: 9781119115182
Release Date: 2015-03-18
Genre: Mathematics

The Wiley Classics Library consists of selected books that have been made more accessible to consumers in an effort to increase global appeal and general circulation. With these new unabridged softcover volumes, Wiley hopes to extend the lives of these works by making them available to future generations of statisticians, mathematicians, and scientists. Spatial statistics — analyzing spatial data through statistical models — has proven exceptionally versatile, encompassing problems ranging from the microscopic to the astronomic. However, for the scientist and engineer faced only with scattered and uneven treatments of the subject in the scientific literature, learning how to make practical use of spatial statistics in day-to-day analytical work is very difficult. Designed exclusively for scientists eager to tap into the enormous potential of this analytical tool and upgrade their range of technical skills, Statistics for Spatial Data is a comprehensive, single-source guide to both the theory and applied aspects of spatial statistical methods. The hard-cover edition was hailed by Mathematical Reviews as an "excellent book which will become a basic reference." This paper-back edition of the 1993 edition, is designed to meet the many technological challenges facing the scientist and engineer. Concentrating on the three areas of geostatistical data, lattice data, and point patterns, the book sheds light on the link between data and model, revealing how design, inference, and diagnostics are an outgrowth of that link. It then explores new methods to reveal just how spatial statistical models can be used to solve important problems in a host of areas in science and engineering. Discussion includes: Exploratory spatial data analysis Spectral theory for stationary processes Spatial scale Simulation methods for spatial processes Spatial bootstrapping Statistical image analysis and remote sensing Computational aspects of model fitting Application of models to disease mapping Designed to accommodate the practical needs of the professional, it features a unified and common notation for its subject as well as many detailed examples woven into the text, numerous illustrations (including graphs that illuminate the theory discussed) and over 1,000 references. Fully balancing theory with applications, Statistics for Spatial Data, Revised Edition is an exceptionally clear guide on making optimal use of one of the ascendant analytical tools of the decade, one that has begun to capture the imagination of professionals in biology, earth science, civil, electrical, and agricultural engineering, geography, epidemiology, and ecology.

Statistical Methods for Spatio Temporal Systems

Author: Barbel Finkenstadt
Publisher: CRC Press
ISBN: 9781420011050
Release Date: 2006-10-20
Genre: Mathematics

Statistical Methods for Spatio-Temporal Systems presents current statistical research issues on spatio-temporal data modeling and will promote advances in research and a greater understanding between the mechanistic and the statistical modeling communities. Contributed by leading researchers in the field, each self-contained chapter starts with an introduction of the topic and progresses to recent research results. Presenting specific examples of epidemic data of bovine tuberculosis, gastroenteric disease, and the U.K. foot-and-mouth outbreak, the first chapter uses stochastic models, such as point process models, to provide the probabilistic backbone that facilitates statistical inference from data. The next chapter discusses the critical issue of modeling random growth objects in diverse biological systems, such as bacteria colonies, tumors, and plant populations. The subsequent chapter examines data transformation tools using examples from ecology and air quality data, followed by a chapter on space-time covariance functions. The contributors then describe stochastic and statistical models that are used to generate simulated rainfall sequences for hydrological use, such as flood risk assessment. The final chapter explores Gaussian Markov random field specifications and Bayesian computational inference via Gibbs sampling and Markov chain Monte Carlo, illustrating the methods with a variety of data examples, such as temperature surfaces, dioxin concentrations, ozone concentrations, and a well-established deterministic dynamical weather model.

Spatio Temporal Heterogeneity

Author: Pierre Dutilleul
Publisher: Cambridge University Press
ISBN: 9780521791274
Release Date: 2011-05-26
Genre: Nature

Our living environment continuously changes in space and time. This book explains how to capture and assess these changes through the relevant statistical framework. It is a useful guide to students, teachers and researchers in the fields of biology, ecology and environmental science. Codes on the accompanying CD-ROM aid analyses.

Hierarchical Modeling and Analysis for Spatial Data

Author: Sudipto Banerjee
Publisher: CRC Press
ISBN: 9780203487808
Release Date: 2003-12-17
Genre: Mathematics

Among the many uses of hierarchical modeling, their application to the statistical analysis of spatial and spatio-temporal data from areas such as epidemiology And environmental science has proven particularly fruitful. Yet to date, the few books that address the subject have been either too narrowly focused on specific aspects of spatial analysis, or written at a level often inaccessible to those lacking a strong background in mathematical statistics. Hierarchical Modeling and Analysis for Spatial Data is the first accessible, self-contained treatment of hierarchical methods, modeling, and data analysis for spatial and spatio-temporal data. Starting with overviews of the types of spatial data, the data analysis tools appropriate for each, and a brief review of the Bayesian approach to statistics, the authors discuss hierarchical modeling for univariate spatial response data, including Bayesian kriging and lattice (areal data) modeling. They then consider the problem of spatially misaligned data, methods for handling multivariate spatial responses, spatio-temporal models, and spatial survival models. The final chapter explores a variety of special topics, including spatially varying coefficient models. This book provides clear explanations, plentiful illustrations --some in full color--a variety of homework problems, and tutorials and worked examples using some of the field's most popular software packages.. Written by a team of leaders in the field, it will undoubtedly remain the primary textbook and reference on the subject for years to come.

Spatial and Spatio temporal Bayesian Models with R INLA

Author: Marta Blangiardo
Publisher: John Wiley & Sons
ISBN: 9781118950197
Release Date: 2015-04-07
Genre: Mathematics

Spatial and Spatio-Temporal Bayesian Models withR-INLA provides a much needed, practically oriented& innovative presentation of the combination of Bayesianmethodology and spatial statistics. The authors combine anintroduction to Bayesian theory and methodology with a focus on thespatial and spatio­-temporal models used within the Bayesianframework and a series of practical examples which allow the readerto link the statistical theory presented to real data problems. Thenumerous examples from the fields of epidemiology, biostatisticsand social science all are coded in the R package R-INLA, which hasproven to be a valid alternative to the commonly used Markov ChainMonte Carlo simulations