Structural Biomaterials

Author: Julian Vincent
Publisher: Princeton University Press
ISBN: 9781400842780
Release Date: 2012-07-29
Genre: Science

This is a thoroughly revised, updated, and expanded edition of a classic illustrated introduction to the structural materials in natural organisms and what we can learn from them to improve man-made technology--from nanotechnology to textiles to architecture. Julian Vincent's book has long been recognized as a standard work on the engineering design of biomaterials and is used by undergraduates, graduates, researchers, and professionals studying biology, zoology, engineering, and biologically inspired design. This third edition incorporates new developments in the field, the most important of which have been at the molecular level. All of the illustrations have been redrawn, the references have been updated, and a new chapter on biomimetic design has been added. Vincent emphasizes the mechanical properties of structural biomaterials, their contribution to the lives of organisms, and how these materials differ from man-made ones. He shows how the properties of biomaterials are derived from their chemistry and interactions, and how to measure them. Starting with proteins and polysaccharides, he shows how skin and hair function, how materials self-assemble, and how ceramics such as bone and mother-of-pearl can be so stiff and tough, despite being made in water in benign ambient conditions. Finally, he combines these topics with an analysis of how the design of biomaterials can be adapted in technology, and presents a series of guidelines for designers. An accessible illustrated introduction with minimal technical jargon Suitable for undergraduates and more advanced readers Integrates chemistry, mechanics, and biology Includes descriptions of all biological materials Simple exposition of mechanical analysis of materials

Structural Biomaterials

Author: Julian F. V. Vincent
Publisher: Princeton University Press
ISBN: 0691025134
Release Date: 1990
Genre: Science

"This book should go a long way towards filling the communication gap between biology and physics in [the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . [Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.

Biomaterials

Author: Joon Park
Publisher: Springer Science & Business Media
ISBN: 9780387378800
Release Date: 2007-07-23
Genre: Technology & Engineering

With sixty years of combined experience, the authors of this extensively revised book have learned to emphasize the fundamental materials science, structure-property relationships, and biological responses as a foundation for a wide array of biomaterials applications. This edition includes a new chapter on tissue engineering and regenerative medicine, approximately 1900 references to additional reading, extensive tutorial materials on new developments in spinal implants and fixation techniques and theory. It also offers systematic coverage of orthopedic implants, and expanded treatment of ceramic materials and implants.

Biomaterials Science

Author: Buddy D. Ratner
Publisher: Academic Press
ISBN: 9780080877808
Release Date: 2012-12-31
Genre: Medical

The revised edition of this renowned and bestselling title is the most comprehensive single text on all aspects of biomaterials science. It provides a balanced, insightful approach to both the learning of the science and technology of biomaterials and acts as the key reference for practitioners who are involved in the applications of materials in medicine. Over 29,000 copies sold, this is the most comprehensive coverage of principles and applications of all classes of biomaterials: "the only such text that currently covers this area comprehensively" - Materials Today Edited by four of the best-known figures in the biomaterials field today; fully endorsed and supported by the Society for Biomaterials Fully revised and expanded, key new topics include of tissue engineering, drug delivery systems, and new clinical applications, with new teaching and learning material throughout, case studies and a downloadable image bank

Inorganic Biomaterials

Author: Xiang C Zhang
Publisher: Smithers Rapra
ISBN: 9781909030411
Release Date: 2014-06-26
Genre: Medical

This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a new concept on mechanical compatibility - 'mechacompatibility'. Almost all implant biomaterials employed to date, such as metal and ceramic implants, do not meet this biological requirement as they have far higher modulus than any biomaterials in the body. The practical techniques that are used in the characterization of biomaterials, including chemical, physical, biological, microscopy and mechanical characterization are described. Some specialised techniques are also introduced such as Synchrotron Micro-Computed Tomography (u-CT) and Magnetic Resonance Imaging (MRI). The reader is given important information on new biomaterials development for orthopaedic and other areas, including controlled release technology, hydroxyapatite and hybrid bioresorbable materials. Finally the book provides a guide to regulatory considerations, an area which is often overlooked, but is an important part of R&D and manufacturing of medical materials and devices.

Biomaterials

Author: Sujata V. Bhat
Publisher: Alpha Science Int'l Ltd.
ISBN: 1842652079
Release Date: 2005
Genre: Science

As biomaterials are used in medical devices, providing needs in such diverse surgical disciplines as ophthalmology, cardiology, neuromuscular surgery, orthopedics, dentistry etc., they must have intimate contact with patient's tissue or body fluid providing a real physical interface, which restricts developments most seriously. This book is written for those who would like to advance their knowledge of biomaterials. The subject matter of the book is divided into twelve chapters dealing with structure and relationship of biological and man made biomaterials. The application of these materials for various medical devices and recent developments in tissue engineering has also covered.

UHMWPE Biomaterials Handbook

Author: Steven M. Kurtz
Publisher: William Andrew
ISBN: 9780323354356
Release Date: 2015-09-16
Genre: Technology & Engineering

UHMWPE Biomaterials Handbook, Third Edition, describes the science, development, properties, and application of ultra-high molecular weight polyethylene (UHMWPE) used in artificial joints. UHMWPE is now the material of choice for joint replacements, and is increasingly being used in fibers for sutures. This book is a one-stop reference for information on this advanced material, covering both introductory topics and the most advanced developments. The third edition adds six new chapters on a range of topics, including the latest in anti-oxidant technologies for stabilizing HXLPE and up-to-date systematic reviews of the clinical literature for HXLPE in hips and knees. The book chronicles the rise and fall of all-metal hip implants, as well as the increased use of ceramic biomaterials and UHMWPE for this application. This book also brings orthopedic researchers and practitioners up to date on the stabilization of UHMWPE with antioxidants, as well as the choices of antioxidant available for practitioners. The book also thoroughly assesses the clinical performance of HXLPE, as well as alternative bearings in knee replacement and UHMWPE articulations with polyether ether ketone (PEEK). Written and edited by the top experts in the field of UHMWPE, this is the only state-of-the-art reference for professionals, researchers, and clinicians working with this material. The only complete reference for professionals, researchers, and clinicians working with ultra-high molecular weight polyethylene biomaterials technologies for joint replacement and implants New edition includes six new chapters on a wide range of topics, including the clinical performance of highly crosslinked polyethylene (HXLPE) in hip and knee replacement, an overview of antioxidant stabilization for UHMWPE, and the medical applications of UHMWPE fibers State-of-the-art coverage of the latest UHMWPE technology, orthopedic applications, biomaterial characterization, and engineering aspects from recognized leaders in the field

Polymeric Biomaterials Structure and function

Author: Severian Dumitriu
Publisher: CRC Press
ISBN: 9781420094701
Release Date: 2013-01
Genre: Medical

Biomaterials have had a major impact on the practice of contemporary medicine and patient care. Growing into a major interdisciplinary effort involving chemists, biologists, engineers, and physicians, biomaterials development has enabled the creation of high-quality devices, implants, and drug carriers with greater biocompatibility and biofunctionality. The fast-paced research and increasing interest in finding new and improved biocompatible or biodegradable polymers has provided a wealth of new information, transforming this edition of Polymeric Biomaterials into a two-volume set. This volume, Polymeric Biomaterials: Structure and Function, contains 25 authoritative chapters written by experts from around the world. Contributors cover the following topics: The structure and properties of synthetic polymers including polyesters, polyphosphazenes, and elastomers The structure and properties of natural polymers such as mucoadhesives, chitin, lignin, and carbohydrate derivatives Blends and composites—for example, metal–polymer composites and biodegradable polymeric/ceramic composites Bioresorbable hybrid membranes, drug delivery systems, cell bioassay systems, electrospinning for regenerative medicine, and more Completely revised and expanded, this state-of-the-art reference presents recent developments in polymeric biomaterials: from their chemical, physical, and structural properties to polymer synthesis and processing techniques and current applications in the medical and pharmaceutical fields.

PEEK Biomaterials Handbook

Author: Steven M. Kurtz
Publisher: William Andrew
ISBN: 9781437744637
Release Date: 2011
Genre: Technology & Engineering

PEEK biomaterials are currently used in thousands of spinal fusion patients around the world every year. Durability, biocompatibility and excellent resistance to aggressive sterilization procedures make PEEK a polymer of choice replacing metal in orthopedic implants, from spinal implants and hip replacements to finger joints and dental implants. This Handbook brings together experts in many different facets related to PEEK clinical performance as well as in the areas of materials science, tribology, and biology to provide a complete reference for specialists in the field of plastics, biomaterials, medical device design and surgical applications. Steven Kurtz, author of the well respected UHMWPE Biomaterials Handbook and Director of the Implant Research Center at Drexel University, has developed a one-stop reference covering the processing and blending of PEEK, its properties and biotribology, and the expanding range of medical implants using PEEK: spinal implants, hip and knee replacement, etc. Full coverage of the properties and applications of PEEK, the leading polymer for spinal implants. PEEK is being used in a wider range of new applications in biomedical engineering, such as hip and knee replacements, and finger joints. These new application areas are explored in detail. Essential reference for plastics enginers, biomedical engineers and orthopedic professionals involved in the use of the PEEK polymer, and medical implants made from PEEK.

Characterization of Polymeric Biomaterials

Author: Maria Cristina Tanzi
Publisher: Woodhead Publishing
ISBN: 9780081007433
Release Date: 2017-06-20
Genre: Technology & Engineering

Characterization of Polymeric Biomaterials presents a comprehensive introduction on the topic before discussing the morphology and surface characterization of biomedical polymers. The structural, mechanical, and biological characterization is described in detail, followed by invaluable case studies of polymer biomaterial implants. With comprehensive coverage of both theoretical and experimental information, this title will provide scientists with an essential guide on the topic of these materials which are regularly used for clinical applications, such as implants and drug delivery devices. However, a range of novel polymers and the development and modification of existing medical polymers means that there is an ongoing need to satisfy particular design requirements. This book explains the critical and fundamentals methods to characterize polymer materials for biomedical applications. Presents a self-contained reference on the characterization of polymeric biomaterials Provides comprehensive information on how to characterize biomedical polymers in order to improve design and synthesis Includes useful case studies that demonstrate the characterization of biomaterial implants

Advances in Ceramic Biomaterials

Author: Paola Palmero
Publisher: Woodhead Publishing
ISBN: 9780081008829
Release Date: 2017-09-15
Genre: Technology & Engineering

Bioceramics are an important class of biomaterials. Due to their desirable attributes such as biocompatibility and osseointegration, as well as their similarity in structure to bone and teeth, ceramic biomaterials have been successfully used in hard tissue applications. In this book, a team of materials research scientists, engineers, and clinicians bridge the gap between materials science and clinical commercialization providing integrated coverage of bioceramics, their applications and challenges. The book is divided into three parts. The first part is a review of classes of medical-grade ceramic materials, their synthesis and processing as well as methods of property assessment. The second part contains a review of ceramic medical products and devices developed, their evolution, their clinical applications and some of the lessons learned from decades of clinical use. The third part outlines the challenges to improve performance and the directions that novel approaches and advanced technologies are taking, to meet these challenges. With a focus on the dialogue between surgeons, engineers, material scientists, and biologists, this book is a valuable resource for researchers and engineers working toward long-lasting, reliable, customized biomedical ceramic and composites devices. Edited by a team of experts with expertise in industry and academia Compiles the most relevant aspects on regulatory issues, standards and engineering of bioceramic medical devices as inspired by commercial and clinical needs Introduces bioceramics, their evolution and applications in hard tissue engineering and medical devices

Principles of Tissue Engineering

Author: Robert Lanza
Publisher: Academic Press
ISBN: 9780123983701
Release Date: 2013-10-17
Genre: Technology & Engineering

Now in its fourth edition, Principles of Tissue Engineering has been the definite resource in the field of tissue engineering for more than a decade. The fourth edition provides an update on this rapidly progressing field, combining the prerequisites for a general understanding of tissue growth and development, the tools and theoretical information needed to design tissues and organs, as well as a presentation by the world’s experts of what is currently known about each specific organ system. As in previous editions, this book creates a comprehensive work that strikes a balance among the diversity of subjects that are related to tissue engineering, including biology, chemistry, material science, and engineering, among others, while also emphasizing those research areas that are likely to be of clinical value in the future. This edition includes greatly expanded focus on stem cells, including induced pluripotent stem (iPS) cells, stem cell niches, and blood components from stem cells. This research has already produced applications in disease modeling, toxicity testing, drug development, and clinical therapies. This up-to-date coverage of stem cell biology and other emerging technologies –such as brain-machine interfaces for controlling bionics and neuroprostheses– is complemented by a series of new and updated chapters on recent clinical experience in applying tissue engineering, as well as a new section on the application of tissue-engineering techniques for food production. The result is a comprehensive textbook that will be useful to students and experts alike. Includes new chapters on biomaterial-protein interactions, nanocomposite and three-dimensional scaffolds, skin substitutes, spinal cord, vision enhancement, and heart valves Offers expanded coverage of adult and embryonic stem cells of the cardiovascular, hematopoietic, musculoskeletal, nervous, and other organ systems Full-color presentation throughout

Surfaces and Interfaces for Biomaterials

Author: Pankaj Vadgama
Publisher: Elsevier
ISBN: 9781845690809
Release Date: 2005-05-27
Genre: Technology & Engineering

Given such problems as rejection, the interface between an implant and its human host is a critical area in biomaterials. Surfaces and interfaces for biomaterials summarises the wealth of research on understanding the surface properties of biomaterials and the way they interact with human tissue. The first part of the book reviews the way biomaterial surfaces form. Part Two discusses ways of monitoring and characterising surface structure and behaviour. The final two parts of the book look at a range of in vitro and in vivo studies of the complex interactions between biomaterials and the body. Chapters cover such topics as bone and tissue regeneration, the role of interface interactions in biodegradable biomaterials, microbial biofilm formation, vascular tissue engineering and ways of modifying biomaterial surfaces to improve biocompatibility. Surfaces and interfaces for biomaterials is a standard work on how to understand and control surface processes in ensuring biomaterials are used successfully in medicine. Complete coverage on the fundamentals of surface structure and forming to biological and clinical outcomes Includes reviews of key surface analytical techniques Edited by a renowned expert and written by an international team of authors

Self assembling Biomaterials

Author: Helena S. Azevedo
Publisher: Woodhead Publishing
ISBN: 9780081020128
Release Date: 2018-04-17
Genre: Technology & Engineering

Self-assembling biomaterials: molecular design, characterization and application in biology and medicine provides a comprehensive coverage on an emerging area of biomaterials science, spanning from conceptual designs to advanced characterization tools and applications of self-assembling biomaterials, and compiling the recent developments in the field. Molecular self-assembly, the autonomous organization of molecules, is ubiquitous in living organisms and intrinsic to biological structures and function. Not surprisingly, the exciting field of engineering artificial self-assembling biomaterials often finds inspiration in Biology. More important, materials that self-assemble speak the language of life and can be designed to seamlessly integrate with the biological environment, offering unique engineering opportunities in bionanotechnology. The book is divided in five parts, comprising design of molecular building blocks for self-assembly; exclusive features of self-assembling biomaterials; specific methods and techniques to predict, investigate and characterize self-assembly and formed assemblies; different approaches for controlling self-assembly across multiple length scales and the nano/micro/macroscopic properties of biomaterials; diverse range of applications in biomedicine, including drug delivery, theranostics, cell culture and tissue regeneration. Written by researchers working in self-assembling biomaterials, it addresses a specific need within the Biomaterials scientific community. Explores both theoretical and practical aspects of self-assembly in biomaterials Includes a dedicated section on characterization techniques, specific for self-assembling biomaterials Examines the use of dynamic self-assembling biomaterials

Structural Biomaterials

Author: Julian F. V. Vincent
Publisher: Princeton University Press
ISBN: 0691025134
Release Date: 1990
Genre: Science

"This book should go a long way towards filling the communication gap between biology and physics in [the area of biomaterials]. It begins with the basic theory of elasticity and viscoelasticity, describing concepts like stress, strain, compliance, and plasticity in simple mathematical terms. . . . For the non-biologist, these chapters provide a clear account of macromolecular structure and conformation. . . . [Vincent's work] is a delight to read, full of interesting anecdotes and examples from unexpected sources. . . . I can strongly recommend this book, as it shows how biologists could use mechanical properties as well as conventional methods to deduce molecular structure."--Anna Furth, The Times Higher Education Supplement In what is now recognized as a standard introduction to biomaterials, Julian Vincent presents a biologist's analysis of the structural materials of organisms, using molecular biology as a starting point. He explores the chemical structure of both proteins and polysaccharides, illustrating how their composition and bonding determine the mechanical properties of the materials in which they occurincluding pliant composites such as skin, artery, and plant tissue; stiff composites such as insect cuticle and wood; and biological ceramics such as teeth, bone, and eggshell. Here Vincent discusses the possibilities of taking ideas from nature with biomimicry and "intelligent" (or self-designing and sensitive) materials.