Structural Equation Modeling With AMOS

Author: Barbara M. Byrne
Publisher: Routledge
ISBN: 9781317633129
Release Date: 2016-06-10
Genre: Psychology

This bestselling text provides a practical guide to structural equation modeling (SEM) using the Amos Graphical approach. Using clear, everyday language, the text is ideal for those with little to no exposure to either SEM or Amos. The author reviews SEM applications based on actual data taken from her own research. Each chapter "walks" readers through the steps involved (specification, estimation, evaluation, and post hoc modification) in testing a variety of SEM models. Accompanying each application is: an explanation of the issues addressed and a schematic presentation of hypothesized model structure; Amos input and output with interpretations; use of the Amos toolbar icons and pull-down menus; and data upon which the model application was based, together with updated references pertinent to the SEM model tested. Thoroughly updated throughout, the new edition features: All new screen shots featuring Amos Version 23. Descriptions and illustrations of Amos’ new Tables View format which enables the specification of a structural model in spreadsheet form. Key concepts and/or techniques that introduce each chapter. Alternative approaches to model analyses when enabled by Amos thereby allowing users to determine the method best suited to their data. Provides analysis of the same model based on continuous and categorical data (Ch. 5) thereby enabling readers to observe two ways of specifying and testing the same model as well as compare results. All applications based on the Amos graphical mode interface accompanied by more "how to" coverage of graphical techniques unique to Amos. More explanation of key procedures and analyses that address questions posed by readers All application data files are available at www.routledge.com/9781138797031. The two introductory chapters in Section 1 review the fundamental concepts of SEM methodology and a general overview of the Amos program. Section 2 provides single-group analyses applications including two first-order confirmatory factor analytic (CFA) models, one second-order CFA model, and one full latent variable model. Section 3 presents multiple-group analyses applications with two rooted in the analysis of covariance structures and one in the analysis of mean and covariance structures. Two models that are increasingly popular with SEM practitioners, construct validity and testing change over time using the latent growth curve, are presented in Section 4. The book concludes with a review of the use of bootstrapping to address non-normal data and a review of missing (or incomplete) data in Section 5. An ideal supplement for graduate level courses in psychology, education, business, and social and health sciences that cover the fundamentals of SEM with a focus on Amos, this practical text continues to be a favorite of both researchers and practitioners. A prerequisite of basic statistics through regression analysis is recommended but no exposure to either SEM or Amos is required.

Strukturgleichungsmodellierung

Author: Rolf Weiber
Publisher: Springer-Verlag
ISBN: 9783642350122
Release Date: 2014-03-31
Genre: Business & Economics

Alle Analysen werden an einem durchgehenden Fallbeispiel konkret und transparent durchgeführt Strukturgleichungsmodelle sind in allen Wissenschaftsdisziplinen von größter Bedeutung, da sie das Standardinstrument zur empirischen Prüfung von Hypothesensystemen darstellen. Dabei stehen oftmals die Beziehungen zwischen hypothetischen Konstrukten (latenten Variablen) im Fokus des Interesses. Das Buch zeichnet den gesamten Prozess der Strukturgleichungsmodellierung von der Konzeptualisierung theoretischer Konstrukte über die Spezifikation von Messmodellen, die Reliabilitäts- und Validitätsprüfung mittels konfirmatorischer Faktorenanalyse bis hin zur Prüfung von kausalen Wirkhypothesen mittels Kovarianzstrukturanalyse sowie PLS nach. Alle Arbeitsschritte werden an einem durchgehenden Fallbeispiel unter Verwendung von SPSS, AMOS und SmartPLS veranschaulicht und jeweils konkrete Anwendungsempfehlungen gegeben. Ebenso werden weiterführende Aspekte wie die Mehrgruppenkausalanalyse, die Spezifikation reflektiver und formativer Messansätze sowie MIMIC-Modelle einsteigergerecht behandelt.

A Beginner s Guide to Structural Equation Modeling

Author: Randall E. Schumacker
Publisher: Routledge
ISBN: 9781317608097
Release Date: 2015-12-22
Genre: Psychology

Noted for its crystal clear explanations, this book is considered the most comprehensive introductory text to structural equation modeling (SEM). Noted for its thorough review of basic concepts and a wide variety of models, this book better prepares readers to apply SEM to a variety of research questions. Programming details and the use of algebra are kept to a minimum to help readers easily grasp the concepts so they can conduct their own analysis and critique related research. Featuring a greater emphasis on statistical power and model validation than other texts, each chapter features key concepts, examples from various disciplines, tables and figures, a summary, and exercises. Highlights of the extensively revised 4th edition include: -Uses different SEM software (not just Lisrel) including Amos, EQS, LISREL, Mplus, and R to demonstrate applications. -Detailed introduction to the statistical methods related to SEM including correlation, regression, and factor analysis to maximize understanding (Chs. 1 – 6). -The 5 step approach to modeling data (specification, identification, estimation, testing, and modification) is now covered in more detail and prior to the modeling chapters to provide a more coherent view of how to create models and interpret results (ch. 7). -More discussion of hypothesis testing, power, sampling, effect sizes, and model fit, critical topics for beginning modelers (ch. 7). - Each model chapter now focuses on one technique to enhance understanding by providing more description, assumptions, and interpretation of results, and an exercise related to analysis and output (Chs. 8 -15). -The use of SPSS AMOS diagrams to describe the theoretical models. -The key features of each of the software packages (Ch. 1). -Guidelines for reporting SEM research (Ch. 16). -www.routledge.com/9781138811935 which provides access to data sets that can be used with any program, links to other SEM examples, related readings, and journal articles, and more. Reorganized, the new edition begins with a more detailed introduction to SEM including the various software packages available, followed by chapters on data entry and editing, and correlation which is critical to understanding how missing data, non-normality, measurement, and restriction of range in scores affects SEM analysis. Multiple regression, path, and factor models are then reviewed and exploratory and confirmatory factor analysis is introduced. These chapters demonstrate how observed variables share variance in defining a latent variables and introduce how measurement error can be removed from observed variables. Chapter 7 details the 5 SEM modeling steps including model specification, identification, estimation, testing, and modification along with a discussion of hypothesis testing and the related issues of power, and sample and effect sizes.Chapters 8 to 15 provide comprehensive introductions to different SEM models including Multiple Group, Second-Order CFA, Dynamic Factor, Multiple-Indicator Multiple-Cause, Mixed Variable and Mixture, Multi-Level, Latent Growth, and SEM Interaction Models. Each of the 5 SEM modeling steps is explained for each model along with an application. Chapter exercises provide practice with and enhance understanding of the analysis of each model. The book concludes with a review of SEM guidelines for reporting research. Designed for introductory graduate courses in structural equation modeling, factor analysis, advanced, multivariate, or applied statistics, quantitative techniques, or statistics II taught in psychology, education, business, and the social and healthcare sciences, this practical book also appeals to researchers in these disciplines. Prerequisites include an introduction to intermediate statistics that covers correlation and regression principles.

Gesundheitsmanagement als personale Ressource der Lebensstilmodifikation

Author: Sandra Ursula Rochnowski
Publisher: Springer-Verlag
ISBN: 9783658235697
Release Date: 2018-09-06
Genre: Business & Economics

Sandra Rochnowski beschäftigt sich mit Enhealthment im Gesundheitsmanagement zur Aktivierung von gesundheitsbewusstem Verhalten und eigenverantwortlichem Handeln der Führungsebene. Sie stellt das Rollenverständnis der Führungskraft im Gesundheitsmanagement dar und identifiziert Prädikatoren für das Ergreifen von Gesundheitsmaßnahmen, die zu einem gesundheitsfördernden Lebensstil beitragen können. Aus der Perspektive der Führungskraft entwickelt sie erstmals eine betriebliche Intervention in Kurorten.

Higher Order Growth Curves and Mixture Modeling with Mplus

Author: Kandauda K.A.S. Wickrama
Publisher: Routledge
ISBN: 9781317283935
Release Date: 2016-04-14
Genre: Psychology

This practical introduction to second-order and growth mixture models using Mplus introduces simple and complex techniques through incremental steps. The authors extend latent growth curves to second-order growth curve and mixture models and then combine the two. To maximize understanding, each model is presented with basic structural equations, figures with associated syntax that highlight what the statistics mean, Mplus applications, and an interpretation of results. Examples from a variety of disciplines demonstrate the use of the models and exercises allow readers to test their understanding of the techniques. A comprehensive introduction to confirmatory factor analysis, latent growth curve modeling, and growth mixture modeling is provided so the book can be used by readers of various skill levels. The book’s datasets are available on the web. Highlights include: -Illustrative examples using Mplus 7.4 include conceptual figures, Mplus program syntax, and an interpretation of results to show readers how to carry out the analyses with actual data. -Exercises with an answer key allow readers to practice the skills they learn. -Applications to a variety of disciplines appeal to those in the behavioral, social, political, educational, occupational, business, and health sciences. -Data files for all the illustrative examples and exercises at www.routledge.com/9781138925151 allow readers to test their understanding of the concepts. -Point to Remember boxes aid in reader comprehension or provide in-depth discussions of key statistical or theoretical concepts. Part 1 introduces basic structural equation modeling (SEM) as well as first- and second-order growth curve modeling. The book opens with the basic concepts from SEM, possible extensions of conventional growth curve models, and the data and measures used throughout the book. The subsequent chapters in part 1 explain the extensions. Chapter 2 introduces conventional modeling of multidimensional panel data, including confirmatory factor analysis (CFA) and growth curve modeling, and its limitations. The logical and theoretical extension of a CFA to a second-order growth curve, known as curve-of-factors model (CFM), are explained in Chapter 3. Chapter 4 illustrates the estimation and interpretation of unconditional and conditional CFMs. Chapter 5 presents the logical and theoretical extension of a parallel process model to a second-order growth curve, known as factor-of-curves model (FCM). Chapter 6 illustrates the estimation and interpretation of unconditional and conditional FCMs. Part 2 reviews growth mixture modeling including unconditional growth mixture modeling (Ch. 7) and conditional growth mixture models (Ch. 8). How to extend second-order growth curves (curve-of-factors and factor-of-curves models) to growth mixture models is highlighted in Chapter 9. Ideal as a supplement for use in graduate courses on (advanced) structural equation, multilevel, longitudinal, or latent variable modeling, latent growth curve and mixture modeling, factor analysis, multivariate statistics, or advanced quantitative techniques (methods) taught in psychology, human development and family studies, business, education, health, and social sciences, this book’s practical approach also appeals to researchers. Prerequisites include a basic knowledge of intermediate statistics and structural equation modeling.

Sarstedt Sch tz IBM SPSS Syntax

Author: Marko Sarstedt
Publisher: Vahlen
ISBN: 9783800643622
Release Date: 2014-09-19
Genre: Business & Economics

Der souveräne Umgang mit der SPSS Syntax bietet einen unschätzbaren Vorteil für die tägliche Arbeit von Anwendern, die mit der Analyse von Daten zu tun haben. Das Buch ist eine integrierte Einführung in die Steuersprache von IBM SPSS Statistics für Studenten, Forscher und Praktiker. Es behandelt neben den notwendigen Grundlagen die Themengebiete Datenaufbereitung, Datentrans-formation und -modifikation. Weitere Themengebiete umfassen die Makro- und Matrixsprache, die in der 2. Auflage deutlich erweitert worden sind. Die Neuauflage wurde von Grund auf neu bearbeitet und um zahlreiche typische Anwendungsbeispiele ergänzt, die anhand realer Daten u.?a. des J.?D. Power and Associates Customer Satisfaction Index veranschaulicht werden. Die zugehörigen Datensätze sind als kostenloses Zusatzmaterial im Internet erhältlich.

Principles of Research in Behavioral Science

Author: Bernard E. Whitley, Jr.
Publisher: Routledge
ISBN: 9781136196584
Release Date: 2012-11-12
Genre: Psychology

Intended for beginning graduate or advanced undergraduate students, this book provides a comprehensive review of research methods used in psychology and related disciplines. It covers topics that are often omitted in other texts including correlational and qualitative research and integrative literature reviews. Basic principles are reviewed for those who need a refresher. The focus is on conceptual issues – statistics are kept to a minimum. Featuring examples from all fields of psychology, the book addresses laboratory and field research. Chapters are written to be used independently, so instructors can pick and choose those that fit their course needs. Reorganized to parallel the steps of the research process, tips on writing reports are also provided. Each chapter features an outline, key terms, a summary, and questions and exercises that integrate chapter topics and put theory into practice. A glossary and an annotated list of readings are now included. Extensively updated throughout, the new edition features a new co-author, Mary Kite, and: • New chapters on qualitative research and content analysis and another on integrative literature reviews including meta-analysis, critical techniques for today’s research environment. • A new chapter on exploratory and confirmatory factor analysis that addresses the use of path analysis and structural equation modeling. • A new chapter on how to write a research report using APA style. • Examples from cross-cultural and multi-cultural research, neuroscience, cognitive, and developmental psychology along with ones from social, industrial, and clinical psychology. • More on Internet research and studies. • Greatly expanded Part 3 on research designs with chapters on true experiments, field research, correlational and single-case designs, content analysis, and survey and qualitative research. • A website with PowerPoint slides for each chapter, a test bank with short answer and multiple choice questions, additional teaching resources, and the tables and figures from the book for Instructor’s and chapter outlines, suggested readings, and links to related web sites for students. Intended as a text for beginning graduate and/or advanced undergraduate courses in research methods or experimental methods or design taught in psychology, human development, family studies, education, or other social and behavioral sciences, a prerequisite of undergraduate statistics and a beginning research methods course is assumed.

Applied Statistics From Bivariate Through Multivariate Techniques

Author: Rebecca M. Warner
Publisher: SAGE
ISBN: 9781412991346
Release Date: 2012-04-10
Genre: Mathematics

Rebecca M. Warner's Applied Statistics: From Bivariate Through Multivariate Techniques, Second Edition provides a clear introduction to widely used topics in bivariate and multivariate statistics, including multiple regression, discriminant analysis, MANOVA, factor analysis, and binary logistic regression. The approach is applied and does not require formal mathematics; equations are accompanied by verbal explanations. Students are asked to think about the meaning of equations. Each chapter presents a complete empirical research example to illustrate the application of a specific method. Although SPSS examples are used throughout the book, the conceptual material will be helpful for users of different programs. Each chapter has a glossary and comprehension questions.

Wahrscheinlichkeit und Regression

Author: Rolf Steyer
Publisher: Springer-Verlag
ISBN: 9783642556739
Release Date: 2013-03-07
Genre: Mathematics

Rolf Steyer, Autor des erfolgreichen Lehrbuchs "Messen und Testen", schließt mit diesem Buch die Kluft zwischen Regressionstheorie und deren empirischer Anwendung, der Regressionsanalyse. Grundbegriffe der Statistik werden ohne Bezug zu komplizierten Stichprobenmodellen erläutert. Neben der Regressionsanalyse können auch verschiedene statistische Verfahren, wie die Varianz- oder Faktorenanalyse, als Spezialfälle regressiver Abhängigkeiten angesehen werden. Das Studium der Regressionstheorie dient daher dem Verständnis grundlegender statistischer Verfahren in der Psychologie.

The Psychology Research Handbook

Author: Frederick T. L. Leong
Publisher: SAGE
ISBN: 9780761930228
Release Date: 2006
Genre: Psychology

A comprehensive, easy-to-understand guide to the entire research process, this book quickly and efficiently equips advanced students and research assistants to conduct a full-scale investigation. The book is organized around the idea of a 'research script' that is, it follows the standard mode of research planning and design, data collection and analysis, and results writing. The volume contains 35 chapters, some co-authored by advanced graduate students who give their fellow students a touch of the 'real world' adding to the clarity and practicality of many chapters.

Statistik Workshop f r Programmierer

Author: Allen B. Downey
Publisher: O'Reilly Germany
ISBN: 9783868993431
Release Date: 2012-05-31
Genre: Computers

Wenn Sie programmieren können, beherrschen Sie bereits Techniken, um aus Daten Wissen zu extrahieren. Diese kompakte Einführung in die Statistik zeigt Ihnen, wie Sie rechnergestützt, anstatt auf mathematischem Weg Datenanalysen mit Python durchführen können. Praktischer Programmier-Workshop statt grauer Theorie: Das Buch führt Sie anhand eines durchgängigen Fallbeispiels durch eine vollständige Datenanalyse -- von der Datensammlung über die Berechnung statistischer Kennwerte und Identifikation von Mustern bis hin zum Testen statistischer Hypothesen. Gleichzeitig werden Sie mit statistischen Verteilungen, den Regeln der Wahrscheinlichkeitsrechnung, Visualisierungsmöglichkeiten und vielen anderen Arbeitstechniken und Konzepten vertraut gemacht. Statistik-Konzepte zum Ausprobieren: Entwickeln Sie über das Schreiben und Testen von Code ein Verständnis für die Grundlagen von Wahrscheinlichkeitsrechnung und Statistik: Überprüfen Sie das Verhalten statistischer Merkmale durch Zufallsexperimente, zum Beispiel indem Sie Stichproben aus unterschiedlichen Verteilungen ziehen. Nutzen Sie Simulationen, um Konzepte zu verstehen, die auf mathematischem Weg nur schwer zugänglich sind. Lernen Sie etwas über Themen, die in Einführungen üblicherweise nicht vermittelt werden, beispielsweise über die Bayessche Schätzung. Nutzen Sie Python zur Bereinigung und Aufbereitung von Rohdaten aus nahezu beliebigen Quellen. Beantworten Sie mit den Mitteln der Inferenzstatistik Fragestellungen zu realen Daten.

Statistik

Author: Udo Kuckartz
Publisher: Springer-Verlag
ISBN: 9783531198903
Release Date: 2013-09-07
Genre: Social Science

Dieses Lehrbuch der statistischen Datenanalyse wurde speziell für Einführungskurse konzipiert und richtet sich an alle, die eine leicht verständliche Einführung in die sozialwissenschaftliche Statistik suchen. Es bezieht sich auf das Feld der Erziehungs- und Sozialwissenschaften und behandelt den Stoff nicht als inhaltsunabhängiges mathematisches Wissen.