System Identification

Author: Lennart Ljung
Publisher: Pearson Education
ISBN: 9780132440530
Release Date: 1998-12-29
Genre: Technology & Engineering

The field's leading text, now completely updated. Modeling dynamical systems — theory, methodology, and applications. Lennart Ljung's System Identification: Theory for the User is a complete, coherent description of the theory, methodology, and practice of System Identification. This completely revised Second Edition introduces subspace methods, methods that utilize frequency domain data, and general non-linear black box methods, including neural networks and neuro-fuzzy modeling. The book contains many new computer-based examples designed for Ljung's market-leading software, System Identification Toolbox for MATLAB. Ljung combines careful mathematics, a practical understanding of real-world applications, and extensive exercises. He introduces both black-box and tailor-made models of linear as well as non-linear systems, and he describes principles, properties, and algorithms for a variety of identification techniques: Nonparametric time-domain and frequency-domain methods. Parameter estimation methods in a general prediction error setting. Frequency domain data and frequency domain interpretations. Asymptotic analysis of parameter estimates. Linear regressions, iterative search methods, and other ways to compute estimates. Recursive (adaptive) estimation techniques. Ljung also presents detailed coverage of the key issues that can make or break system identification projects, such as defining objectives, designing experiments, controlling the bias distribution of transfer-function estimates, and carefully validating the resulting models. The first edition of System Identification has been the field's most widely cited reference for over a decade. This new edition will be the new text of choice for anyone concerned with system identification theory and practice.

System Identification

Author: Rik Pintelon
Publisher: John Wiley & Sons
ISBN: 9780471660958
Release Date: 2004-04-05
Genre: Science

Electrical Engineering System Identification A Frequency Domain Approach How does one model a linear dynamic system from noisy data? This book presents a general approach to this problem, with both practical examples and theoretical discussions that give the reader a sound understanding of the subject and of the pitfalls that might occur on the road from raw data to validated model. The emphasis is on robust methods that can be used with a minimum of user interaction. Readers in many fields of engineering will gain knowledge about: * Choice of experimental setup and experiment design * Automatic characterization of disturbing noise * Generation of a good plant model * Detection, qualification, and quantification of nonlinear distortions * Identification of continuous- and discrete-time models * Improved model validation tools and from the theoretical side about: * System identification * Interrelations between time- and frequency-domain approaches * Stochastic properties of the estimators * Stochastic analysis System Identification: A Frequency Domain Approach is written for practicing engineers and scientists who do not want to delve into mathematical details of proofs. Also, it is written for researchers who wish to learn more about the theoretical aspects of the proofs. Several of the introductory chapters are suitable for undergraduates. Each chapter begins with an abstract and ends with exercises, and examples are given throughout.

Mastering System Identification in 100 Exercises

Author: Johan Schoukens
Publisher: John Wiley & Sons
ISBN: 9781118218501
Release Date: 2012-04-02
Genre: Technology & Engineering

This book enables readers to understand system identification and linear system modeling through 100 practical exercises without requiring complex theoretical knowledge. The contents encompass state-of-the-art system identification methods, with both time and frequency domain system identification methods covered, including the pros and cons of each. Each chapter features MATLAB exercises, discussions of the exercises, accompanying MATLAB downloads, and larger projects that serve as potential assignments in this learn-by-doing resource.

Modeling of Dynamic Systems

Author: Lennart Ljung
Publisher: Prentice Hall
ISBN: 0135970970
Release Date: 1994
Genre: Science

Written by a recognized authority in the field of identification and control, this book draws together into a single volume the important aspects of system identification AND physical modelling. KEY TOPICS: Explores techniques used to construct mathematical models of systems based on knowledge from physics, chemistry, biology, etc. (e.g., techniques with so called bond-graphs, as well those which use computer algebra for the modeling work). Explains system identification techniques used to infer knowledge about the behavior of dynamic systems based on observations of the various input and output signals that are available for measurement. Shows how both types of techniques need to be applied in any given practical modeling situation. Considers applications, primarily simulation. For practicing engineers who are faced with problems of modeling.

Applied System Identification

Author: Jer-Nan Juang
Publisher:
ISBN: 013079211X
Release Date: 1994
Genre: Technology & Engineering

Effective system identification includes the underlying methodologies, computational procedures, and their implementation. To this end, this volume presents readers with the mathematical background required to participate in the growing field of system identification as applied to engineering systems. Author Jer-Nan Juang provides a common basis for understanding the techniques developed under various disciplines. In addition, he attempts to bring the discipline of system identification up to date. Specifically Applied System Identification: provides an overview of the disciplines of modal testing used in structural engineering and system identification; presents time- and frequency-domain models used in the disciplines of structures and controls; identifies basic concepts and properties of the frequency response function; features a unified mathematical framework based on the theory of system realization to correlate some of the existing time-domain methods commonly used in modal testing; introduces readers to a new way of interpreting the input/output relationship via an observer for identification of a system model and its corresponding observer to characterize system uncertainties; proposes a simple, yet effective way of curve-fitting the frequency response data and of constructing a system model via matrix-fraction description methods; considers the identification problem of a system operating in closed-loop with an existing feedback controller; develops a unified mathematical framework to derive recursive algorithms for the fast transversal filter and the least-squares lattice filter. Whether used as a textbook or as an addition to your personal reference library, Applied System Identification offers an ideal opportunity to build a bridge between the disciplines of system identification as applied to controls and to modal testing.

System Identification

Author: Rik Pintelon
Publisher: John Wiley & Sons
ISBN: 9781118287392
Release Date: 2012-04-04
Genre: Science

System identification is a general term used to describe mathematical tools and algorithms that build dynamical models from measured data. Used for prediction, control, physical interpretation, and the designing of any electrical systems, they are vital in the fields of electrical, mechanical, civil, and chemical engineering. Focusing mainly on frequency domain techniques, System Identification: A Frequency Domain Approach, Second Edition also studies in detail the similarities and differences with the classical time domain approach. It high??lights many of the important steps in the identification process, points out the possible pitfalls to the reader, and illustrates the powerful tools that are available. Readers of this Second Editon will benefit from: MATLAB software support for identifying multivariable systems that is freely available at the website http://booksupport.wiley.com State-of-the-art system identification methods for both time and frequency domain data New chapters on non-parametric and parametric transfer function modeling using (non-)period excitations Numerous examples and figures that facilitate the learning process A simple writing style that allows the reader to learn more about the theo??retical aspects of the proofs and algorithms Unlike other books in this field, System Identification, Second Edition is ideal for practicing engineers, scientists, researchers, and both master's and PhD students in electrical, mechanical, civil, and chemical engineering.

System Identification

Author: Karel J. Keesman
Publisher: Springer Science & Business Media
ISBN: 0857295225
Release Date: 2011-05-16
Genre: Technology & Engineering

System Identification shows the student reader how to approach the system identification problem in a systematic fashion. The process is divided into three basic steps: experimental design and data collection; model structure selection and parameter estimation; and model validation, each of which is the subject of one or more parts of the text. Following an introduction on system theory, particularly in relation to model representation and model properties, the book contains four parts covering: • data-based identification – non-parametric methods for use when prior system knowledge is very limited; • time-invariant identification for systems with constant parameters; • time-varying systems identification, primarily with recursive estimation techniques; and • model validation methods. A fifth part, composed of appendices, covers the various aspects of the underlying mathematics needed to begin using the text. The book uses essentially semi-physical or gray-box modeling methods although data-based, transfer-function system descriptions are also introduced. The approach is problem-based rather than rigorously mathematical. The use of finite input–output data is demonstrated for frequency- and time-domain identification in static, dynamic, linear, nonlinear, time-invariant and time-varying systems. Simple examples are used to show readers how to perform and emulate the identification steps involved in various control design methods with more complex illustrations derived from real physical, chemical and biological applications being used to demonstrate the practical applicability of the methods described. End-of-chapter exercises (for which a downloadable instructors’ Solutions Manual is available from fill in URL here) will both help students to assimilate what they have learned and make the book suitable for self-tuition by practitioners looking to brush up on modern techniques. Graduate and final-year undergraduate students will find this text to be a practical and realistic course in system identification that can be used for assessing the processes of a variety of engineering disciplines. System Identification will help academic instructors teaching control-related to give their students a good understanding of identification methods that can be used in the real world without the encumbrance of undue mathematical detail.

Aircraft System Identification

Author: Eugene Morelli
Publisher:
ISBN: 0997430613
Release Date: 2016-11-15
Genre: Aeronautics

This book provides a comprehensive treatment of both the theoretical underpinnings and the practical application of aircraft modeling based on experimental data, also known as aircraft system identification. The methods and algorithms explained in the book are implemented in a NASA software toolbox called SIDPAC (System IDentification Programs for AirCraft). SIDPAC is written in MATLAB, and is available by request from NASA Langley Research Center to U.S. citizens only. SIDPAC is composed of many different tools that implement a wide variety of practical approaches explained fully in the book. These tools can be readily applied to solve aircraft system identification problems.

Hansen Solubility Parameters

Author: Charles M. Hansen
Publisher: CRC Press
ISBN: 1420006835
Release Date: 2007-06-15
Genre: Science

Hansen solubility parameters (HSPs) are used to predict molecular affinities, solubility, and solubility-related phenomena. Revised and updated throughout, Hansen Solubility Parameters: A User's Handbook, Second Edition features the three Hansen solubility parameters for over 1200 chemicals and correlations for over 400 materials including polymers, inorganic salts, and biological materials. To update his groundbreaking handbook with the latest advances and perspectives, Charles M. Hansen has invited five renowned experts to share their work, theories, and practical applications involving HSPs. New discussions include a new statistical thermodynamics approach for confirming existing HSPs and how they fit into other thermodynamic theories for polymer solutions. Entirely new chapters examine the prediction of environmental stress cracking as well as absorption and diffusion in polymers. Highlighting recent findings on interactions with DNA, the treatment of biological materials also includes skin tissue, proteins, natural fibers, and cholesterol. The book also covers the latest applications of HSPs, such as ozone-safe “designer” solvents, protective clothing, drug delivery systems, and petroleum applications. Presenting a comprehensive survey of the theoretical and practical aspects of HSPs, Hansen Solubility Parameters, Second Edition concludes with a detailed discussion on the necessary research, future directions, and potential applications for which HSPs can provide a useful means of prediction in areas such as biological materials, controlled release applications, nanotechnology, and self-assembly.

Time Frequency Signal Analysis and Processing

Author: Boualem Boashash
Publisher: Academic Press
ISBN: 9780123985255
Release Date: 2015-12-11
Genre: Technology & Engineering

Time-Frequency Signal Analysis and Processing (TFSAP) is a collection of theory, techniques and algorithms used for the analysis and processing of non-stationary signals, as found in a wide range of applications including telecommunications, radar, and biomedical engineering. This book gives the university researcher and R&D engineer insights into how to use TFSAP methods to develop and implement the engineering application systems they require. New to this edition: New sections on Efficient and Fast Algorithms; a "Getting Started" chapter enabling readers to start using the algorithms on simulated and real examples with the TFSAP toolbox, compare the results with the ones presented in the book and then insert the algorithms in their own applications and adapt them as needed. Two new chapters and twenty three new sections, including updated references. New topics including: efficient algorithms for optimal TFDs (with source code), the enhanced spectrogram, time-frequency modelling, more mathematical foundations, the relationships between QTFDs and Wavelet Transforms, new advanced applications such as cognitive radio, watermarking, noise reduction in the time-frequency domain, algorithms for Time-Frequency Image Processing, and Time-Frequency applications in neuroscience (new chapter). A comprehensive tutorial introduction to Time-Frequency Signal Analysis and Processing (TFSAP), accessible to anyone who has taken a first course in signals Key advances in theory, methodology and algorithms, are concisely presented by some of the leading authorities on the respective topics Applications written by leading researchers showing how to use TFSAP methods

Handbook of Multisensor Data Fusion

Author: Martin Liggins II
Publisher: CRC Press
ISBN: 9781420053098
Release Date: 2017-01-06
Genre: Technology & Engineering

In the years since the bestselling first edition, fusion research and applications have adapted to service-oriented architectures and pushed the boundaries of situational modeling in human behavior, expanding into fields such as chemical and biological sensing, crisis management, and intelligent buildings. Handbook of Multisensor Data Fusion: Theory and Practice, Second Edition represents the most current concepts and theory as information fusion expands into the realm of network-centric architectures. It reflects new developments in distributed and detection fusion, situation and impact awareness in complex applications, and human cognitive concepts. With contributions from the world’s leading fusion experts, this second edition expands to 31 chapters covering the fundamental theory and cutting-edge developments that are driving this field. New to the Second Edition— · Applications in electromagnetic systems and chemical and biological sensors · Army command and combat identification techniques · Techniques for automated reasoning · Advances in Kalman filtering · Fusion in a network centric environment · Service-oriented architecture concepts · Intelligent agents for improved decision making · Commercial off-the-shelf (COTS) software tools From basic information to state-of-the-art theories, this second edition continues to be a unique, comprehensive, and up-to-date resource for data fusion systems designers.

Multivariable Feedback Control

Author: Sigurd Skogestad
Publisher: Wiley-Interscience
ISBN: 0470011688
Release Date: 2005-11-04
Genre: Science

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing

System Identification SYSID 03

Author: P. M. J. van den Hof
Publisher: Elsevier
ISBN: 0080437095
Release Date: 2004-06-29
Genre: Science

The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.