A First Introduction to the Finite Element Analysis Program MSC Marc Mentat

Author: Andreas Öchsner
Publisher: Springer
ISBN: 9783319719153
Release Date: 2017-11-28
Genre: Science

This book offers a brief introduction to the general-purpose finite element program MSC Marc, focusing on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. As such, it is an ideal companion book to classical introductory courses on the finite element method. MSC Marc is a specialized program for non-linear problems (implicit solver), which is distributed by the MSC Software Corporation and commonly used in academia and industry. The documentation of all finite element programs now includes a variety of step-by-step examples of differing complexity, and all software companies offer professional workshops on different topics. Since the first edition of the book, there have been several new releases of Marc/Mentat and numerous changes. This new edition incorporates the latest Marc/Mentat software developments and new examples.

The Finite Element Analysis Program MSC Marc Mentat

Author: Andreas Öchsner
Publisher: Springer
ISBN: 9789811008214
Release Date: 2016-03-30
Genre: Science

Based on simple examples, this book offers a short introduction to the general-purpose finite element program MSC Marc, a specialized program for non-linear problems (implicit solver) distributed by the MSC Software Corporation, which is commonly used in academia and industry. Today the documentation of all finite element programs includes a variety of step-by-step examples of differing complexity, and in addition, all software companies offer professional workshops on different topics. As such, rather than competing with these, the book focuses on providing simple examples, often single-element problems, which can easily be related to the theory that is discussed in finite element lectures. This makes it an ideal companion book to classical introductory courses on the finite element method.

Advanced Finite Element Simulation with MSC Marc

Author: Zia Javanbakht
Publisher: Springer
ISBN: 9783319476681
Release Date: 2017-01-02
Genre: Technology & Engineering

This book offers an in-depth insight into the general-purpose finite element program MSC Marc, which is distributed by MSC Software Corporation. It is a specialized program for nonlinear problems (implicit solver) which is common in academia and industry. The primary goal of this book is to provide a comprehensive introduction to a special feature of this software: the user can write user-subroutines in the programming language Fortran, which is the language of all classical finite element packages. This subroutine feature allows the user to replace certain modules of the core code and to implement new features such as constitutive laws or new elements. Thus, the functionality of commercial codes (‘black box’) can easily be extended by linking user written code to the main core of the program. This feature allows to take advantage of a commercial software package with the flexibility of a ‘semi-open’ code.

Computational Statics and Dynamics

Author: Andreas Öchsner
Publisher: Springer
ISBN: 9789811007330
Release Date: 2016-03-31
Genre: Technology & Engineering

This book introduces readers to modern computational mechanics based on the finite element method. It helps students succeed in mechanics courses by showing them how to apply the fundamental knowledge they gained in the first years of their engineering education to more advanced topics. In order to deepen readers’ understanding of the derived equations and theories, each chapter also includes supplementary problems. These problems start with fundamental knowledge questions on the theory presented in the chapter, followed by calculation problems. In total over 80 such calculation problems are provided, along with brief solutions for each. This book is especially designed to meet the needs of Australian students, reviewing the mathematics covered in their first two years at university. The 13-week course comprises three hours of lectures and two hours of tutorials per week.

Introduction to Environmental Soil Physics

Author: Daniel Hillel
Publisher: Elsevier
ISBN: 9780080495774
Release Date: 2003-12-17
Genre: Technology & Engineering

An abridged, student-oriented edition of Hillel's earlier published Environmental Soil Physics, Introduction to Environmental Soil Physics is a more succinct elucidation of the physical principles and processes governing the behavior of soil and the vital role it plays in both natural and managed ecosystems. The textbook is self-contained and self-explanatory, with numerous illustrations and sample problems. Based on sound fundamental theory, the textbook leads to a practical consideration of soil as a living system in nature and illustrates the influences of human activity upon soil structure and function. Students, as well as other readers, will better understand the importance of soils and the pivotal possition they occupy with respect to careful and knowledgeable conservation. Written in an engaging and clear style, posing and resolving issues relevant to the terrestrial environment Explores the gamut of the interactions among the phases in the soil and the dynamic interconnection of the soil with the subterranean and atmospheric domains Reveals the salient ideas, approaches, and methods of environmental soil physics Includes numerous illustrative exercises, which are explicitly solved Designed to serve for classroom and laboratory instruction, for self-study, and for reference Oriented toward practical problems in ecology, field-scale hydrology, agronomy, and civil engineering Differs from earlier texts in its wider scope and holistic environmental conception

Computational Statics Revision Course

Author: Zia Javanbakht
Publisher: Springer
ISBN: 9783319674629
Release Date: 2017-10-31
Genre: Science

This revision and work book offers a very specific concept for learning the finite element method applying it to problems from statics of: It skips all the classical derivations and focusses only the essential final results. Based on these `essentials', fully solved example problems are presented. To facilitate the initial learning process, the authors compiled 10 recommended steps for a linear finite element solution procedure (`hand calculation') and all the solved examples follow this simple scheme. These 10 recommended steps help engineering students to master the finite element method and guide through fundamental standard problems, although there are neither 10 recommended steps for real-life engineering problems nor 10 standard problems that cover all possible problems that a young engineer may face during his first years of professional work. This revision course accompanies the textbook "Computational Statics and Dynamics: An Introduction Based on the Finite Element Method" by the same authors.

Understanding Mechanics

Author: A. J. Sadler
Publisher: Oxford University Press, USA
ISBN: 0199146756
Release Date: 1996
Genre: Mechanics

One of the clearest and most straightforward texts ever published, Understanding Mechanics covers all the topics required in the single-subject A Level. It is equally appropriate for those preparing for other Mathematics examinations at A Level and for students on technical courses in further and higher education. Key Points: DT Principles are introduced in a simple and direct manner and all have worked examples DT Ample opportunity is given for practice with questions and exercises carefully graded to provide a steady progression DT Each chapter closes with a comprehensive selection of recent examination questions DT Answers are given at the back of the book

Computational Methods in Elasticity and Plasticity

Author: A. Anandarajah
Publisher: Springer Science & Business Media
ISBN: 1441963790
Release Date: 2011-01-04
Genre: Technology & Engineering

Computational Methods in Elasticity and Plasticity: Solids and Porous Media presents the latest developments in the area of elastic and elasto-plastic finite element modeling of solids, porous media and pressure-dependent materials and structures. The book covers the following topics in depth: the mathematical foundations of solid mechanics, the finite element method for solids and porous media, the theory of plasticity and the finite element implementation of elasto-plastic constitutive models. The book also includes: -A detailed coverage of elasticity for isotropic and anisotropic solids. -A detailed treatment of nonlinear iterative methods that could be used for nonlinear elastic and elasto-plastic analyses. -A detailed treatment of a kinematic hardening von Mises model that could be used to simulate cyclic behavior of solids. -Discussion of recent advances in the analysis of porous media and pressure-dependent materials in more detail than other books currently available. Computational Methods in Elasticity and Plasticity: Solids and Porous Media also contains problem sets, worked examples and a solutions manual for instructors.

Non Linear Finite Element Analysis in Structural Mechanics

Author: Wilhelm Rust
Publisher: Springer
ISBN: 9783319133805
Release Date: 2015-02-18
Genre: Science

This monograph describes the numerical analysis of non-linearities in structural mechanics, i.e. large rotations, large strain (geometric non-linearities), non-linear material behaviour, in particular elasto-plasticity as well as time-dependent behaviour, and contact. Based on that, the book treats stability problems and limit-load analyses, as well as non-linear equations of a large number of variables. Moreover, the author presents a wide range of problem sets and their solutions. The target audience primarily comprises advanced undergraduate and graduate students of mechanical and civil engineering, but the book may also be beneficial for practising engineers in industry.

Damage Mechanics with Finite Elements

Author: P.I. Kattan
Publisher: Springer Science & Business Media
ISBN: 9783642563843
Release Date: 2012-12-06
Genre: Science

The major goal of this book is to present the implementation of some damage models with finite elements. The damage models are based on the principles of continuum damage mechanics and the effective stress concept. Several books have appeared recently on damage mechanics but are mostly theoretical in nature. Alternatively, this book provides a complete finite element program that includes the effects of damage. The book consists of two parts. Part I includes two chapters mainly review ing topics from finite element analysis and continuum damage mechanics. The reader is cautioned that the material contained in this part is introductor- other references must be consulted for the theoretical aspects of these topics. For a complete theoretical treatment of the subject, the reader is referred to the book Advances in Damage Mechanics: Metals and Metal Matrix Composites by Voyiadjis and Kattan, published in 1999. In Part II the finite element program DNA is introduced in three chapters. DNA stands for "Da mage Nonlinear Analysis". The program can be used for the analysis of elasto plastic material behavior including the effects of damage within the frame work of damage mechanics. Two versions of DNA are presented - one for small strain analysis and one for finite strain analysis. The program makes extensive calls to a library of tensor operations developed by the authors. The tensor library is extensively outlined in the last chapter of the book.

Superplastic Forming of Advanced Metallic Materials

Author: G Giuliano
Publisher: Elsevier
ISBN: 9780857092779
Release Date: 2011-06-27
Genre: Technology & Engineering

Ultra fine-grained metals can show exceptional ductility, known as superplasticity, during sheet forming. The higher ductility of superplastic metals makes it possible to form large and complex components in a single operation without joints or rivets. The result is less waste, lower weight and manufacturing costs, high precision and lack of residual stress associated with welding which makes components ideal for aerospace, automotive and other applications. Superplastic forming of advanced metallic materials summarises key recent research on this important process. Part one reviews types of superplastic metals, standards for superplastic forming, processes and equipment. Part two discusses ways of modelling superplastic forming processes whilst the final part of the book considers applications, including superplastic forming of titanium, aluminium and magnesium alloys. With its distinguished editor and international team of contributors, Superplastic forming of advanced metallic materials is a valuable reference for metallurgists and engineers in such sectors as aerospace and automotive engineering. Note: The Publishers wish to point out an error in the authorship of Chapter 3 which was originally listed as: G. Bernhart, Clément Ader Institute, France. The correct authorship is: G Bernhart, P. Lours, T. Cutard, V. Velay, Ecole des Mines Albi, France and F. Nazaret, Aurock, France. The Publishers apologise to the authors for this error. Reviews types of superplastic metals and standards for superplastic forming Discusses the modelling of superplastic forming, including mathematical and finite element modelling Examines various applications, including superplastic forming of titanium, aluminiun and magnesium alloys

A Project Based Introduction to Computational Statics

Author: Andreas Öchsner
Publisher: Springer
ISBN: 9783319698175
Release Date: 2017-11-15
Genre: Technology & Engineering

This book uses a novel concept to teach the finite element method, applying it to solid mechanics. This major conceptual shift takes away lengthy theoretical derivations in the face-to-face interactions with students and focuses on the summary of key equations and concepts; and to practice these on well-chosen example problems. The theoretical derivations are provided as additional reading and students must study and review the derivations in a self-study approach. The book provides the theoretical foundations to solve a comprehensive design project in tensile testing. A classical clip-on extensometer serves as the demonstrator on which to apply the provided concepts. The major goal is to derive the calibration curve based on different approaches, i.e., analytical mechanics and based on the finite element method, and to consider further design questions such as technical drawings, manufacturing, and cost assessment. Working with two concepts, i.e., analytical and computational mechanics strengthens the vertical integration of knowledge and allows the student to compare and understand the different concepts, as well as highlighting the essential need for benchmarking any numerical result.

Advanced Methods of Continuum Mechanics for Materials and Structures

Author: Konstantin Naumenko
Publisher: Springer
ISBN: 9789811009594
Release Date: 2016-05-12
Genre: Technology & Engineering

This volume presents a collection of contributions on advanced approaches of continuum mechanics, which were written to celebrate the 60th birthday of Prof. Holm Altenbach. The contributions are on topics related to the theoretical foundations for the analysis of rods, shells and three-dimensional solids, formulation of constitutive models for advanced materials, as well as development of new approaches to the modeling of damage and fractures.

Introduction to Radiation Protection

Author: Claus Grupen
Publisher: Springer Science & Business Media
ISBN: 3642025862
Release Date: 2010-04-20
Genre: Science

This account of sources of ionizing radiation and methods of radiation protection describes units of radiation protection, measurement techniques, biological effects, environmental radiation and many applications. Each chapter contains problems with solutions.

Multiscale Modeling of Complex Materials

Author: Tomasz Sadowski
Publisher: Springer
ISBN: 9783709118122
Release Date: 2014-10-14
Genre: Technology & Engineering

The papers in this volume deal with materials science, theoretical mechanics and experimental and computational techniques at multiple scales, providing a sound base and a framework for many applications which are hitherto treated in a phenomenological sense. The basic principles are formulated of multiscale modeling strategies towards modern complex multiphase materials subjected to various types of mechanical, thermal loadings and environmental effects. The focus is on problems where mechanics is highly coupled with other concurrent physical phenomena. Attention is also focused on the historical origins of multiscale modeling and foundations of continuum mechanics currently adopted to model non-classical continua with substructure, for which internal length scales play a crucial role.