The Finite Volume Method in Computational Fluid Dynamics

Author: F. Moukalled
Publisher: Springer
ISBN: 9783319168746
Release Date: 2015-08-13
Genre: Technology & Engineering

This textbook explores both the theoretical foundation of the Finite Volume Method (FVM) and its applications in Computational Fluid Dynamics (CFD). Readers will discover a thorough explanation of the FVM numerics and algorithms used for the simulation of incompressible and compressible fluid flows, along with a detailed examination of the components needed for the development of a collocated unstructured pressure-based CFD solver. Two particular CFD codes are explored. The first is uFVM, a three-dimensional unstructured pressure-based finite volume academic CFD code, implemented within Matlab. The second is OpenFOAM®, an open source framework used in the development of a range of CFD programs for the simulation of industrial scale flow problems. With over 220 figures, numerous examples and more than one hundred exercise on FVM numerics, programming, and applications, this textbook is suitable for use in an introductory course on the FVM, in an advanced course on numerics, and as a reference for CFD programmers and researchers.

Fluid Mechanics and Its Applications

Author: Vijay Gupta
Publisher: New Academic Science Limited
ISBN: 1906574928
Release Date: 2012-01-01
Genre: Science

Concept of fluid mechanics explained starting from simple flow phenomena. Level of mathematics kept low to emphasize phenomena itself. Rich experience of teaching utilized to avoid misunderstandings, over-generalizations and misapplications. Solved problems to highlight applications.

Engineering Fluid Dynamics

Author: C. Kleinstreuer
Publisher: Cambridge University Press
ISBN: 0521496705
Release Date: 1997-02-28
Genre: Science

A practical approach to the study of fluid mechanics at the graduate level.

An Introduction to Computational Fluid Dynamics

Author: Henk Kaarle Versteeg
Publisher: Pearson Education
ISBN: 0131274988
Release Date: 2007
Genre: Science

This book presents the fundamentals of computational fluid dynamics for the novice. It provides a thorough yet user-friendly introduction to the governing equations and boundary conditions of viscous fluid flows and its modelling.

The Design of High Efficiency Turbomachinery and Gas Turbines

Author: David Gordon Wilson
Publisher: MIT Press
ISBN: 9780262325813
Release Date: 2014-09-05
Genre: Technology & Engineering

This comprehensive textbook is unique in its design-focused approach to turbomachinery and gas turbines. It offers students and practicing engineers methods for configuring these machines to perform with the highest possible efficiency. Examples and problems are based on the actual design of turbomachinery and turbines. After an introductory chapter that outlines the goals of the book and provides definitions of terms and parts, the book offers a brief review of the basic principles of thermodynamics and efficiency definitions. The rest of the book is devoted to the analysis and design of real turbomachinery configurations and gas turbines, based on a consistent application of thermodynamic theory and a more empirical treatment of fluid dynamics that relies on the extensive use of design charts. Topics include turbine power cycles, diffusion and diffusers, the analysis and design of three-dimensional free-stream flow, and combustion systems and combustion calculations. The second edition updates every chapter, adding material on subjects that include flow correlations, energy transfer in turbomachines, and three-dimensional design. A solutions manual is available for instructors. This new MIT Press edition makes a popular text available again, with corrections and some updates, to a wide audience of students, professors, and professionals.

Computational Methods for Fluid Dynamics

Author: Joel H. Ferziger
Publisher: Springer Science & Business Media
ISBN: 9783642976513
Release Date: 2012-12-06
Genre: Technology & Engineering

A detailed description of the methods most often used in practice. The authors are experts in their fields and cover such advanced techniques as direct and large-eddy simulation of turbulence, multigrid methods, parallel computing, moving grids, structured, block-structured and unstructured boundary-fitted grids, and free surface flows. The book shows common roots and basic principles for many apparently different methods, while also containing a great deal of practical advice for code developers and users. All the computer codes can be accessed from the Springer server on the internet. Designed to be equally useful for beginners and experts.

Computational Fluid Mechanics and Heat Transfer Third Edition

Author: Richard H. Pletcher
Publisher: Taylor & Francis
ISBN: 9781466578302
Release Date: 2016-04-19
Genre: Science

Thoroughly updated to include the latest developments in the field, this classic text on finite-difference and finite-volume computational methods maintains the fundamental concepts covered in the first edition. As an introductory text for advanced undergraduates and first-year graduate students, Computational Fluid Mechanics and Heat Transfer, Third Edition provides the background necessary for solving complex problems in fluid mechanics and heat transfer. Divided into two parts, the book first lays the groundwork for the essential concepts preceding the fluids equations in the second part. It includes expanded coverage of turbulence and large-eddy simulation (LES) and additional material included on detached-eddy simulation (DES) and direct numerical simulation (DNS). Designed as a valuable resource for practitioners and students, new homework problems have been added to further enhance the student’s understanding of the fundamentals and applications.

Vectors Tensors and the Basic Equations of Fluid Mechanics

Author: Rutherford Aris
Publisher: Courier Corporation
ISBN: 9780486134895
Release Date: 2012-08-28
Genre: Mathematics

Introductory text, geared toward advanced undergraduate and graduate students, applies mathematics of Cartesian and general tensors to physical field theories and demonstrates them in terms of the theory of fluid mechanics. 1962 edition.

Computational Fluid Dynamics

Author: Takeo Kajishima
Publisher: Springer
ISBN: 9783319453040
Release Date: 2016-10-18
Genre: Technology & Engineering

This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications.

Computational Fluid Dynamics

Author: John Wendt
Publisher: Springer Science & Business Media
ISBN: 9783540850564
Release Date: 2008-10-22
Genre: Technology & Engineering

Computational Fluid Dynamics: An Introduction grew out of a von Karman Institute (VKI) Lecture Series by the same title ?rst presented in 1985 and repeated with modi?cations every year since that time. The objective, then and now, was to present the subject of computational ?uid dynamics (CFD) to an audience unfamiliar with all but the most basic numerical techniques and to do so in such a way that the practical application of CFD would become clear to everyone. A second edition appeared in 1995 with updates to all the chapters and when that printing came to an end, the publisher requested that the editor and authors consider the preparation of a third edition. Happily, the authors received the request with enthusiasm. The third edition has the goal of presenting additional updates and clari?cations while preserving the introductory nature of the material. The book is divided into three parts. John Anderson lays out the subject in Part I by ?rst describing the governing equations of ?uid dynamics, concentrating on their mathematical properties which contain the keys to the choice of the numerical approach. Methods of discretizing the equations are discussed and transformation techniques and grids are presented. Two examples of numerical methods close out this part of the book: source and vortex panel methods and the explicit method. Part II is devoted to four self-contained chapters on more advanced material. Roger Grundmann treats the boundary layer equations and methods of solution.

Nonlinear Dynamics and Chaos

Author: Steven H. Strogatz
Publisher: Hachette UK
ISBN: 9780813349114
Release Date: 2014-08-26
Genre: Mathematics

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors. A unique feature of the book is its emphasis on applications. These include mechanical vibrations, lasers, biological rhythms, superconducting circuits, insect outbreaks, chemical oscillators, genetic control systems, chaotic waterwheels, and even a technique for using chaos to send secret messages. In each case, the scientific background is explained at an elementary level and closely integrated with mathematical theory. In the twenty years since the first edition of this book appeared, the ideas and techniques of nonlinear dynamics and chaos have found application to such exciting new fields as systems biology, evolutionary game theory, and sociophysics. This second edition includes new exercises on these cutting-edge developments, on topics as varied as the curiosities of visual perception and the tumultuous love dynamics in Gone With the Wind.

Optimization and Computational Fluid Dynamics

Author: Dominique Thévenin
Publisher: Springer Science & Business Media
ISBN: 3540721533
Release Date: 2008-01-08
Genre: Technology & Engineering

The numerical optimization of practical applications has been an issue of major importance for the last 10 years. It allows us to explore reliable non-trivial configurations, differing widely from all known solutions. The purpose of this book is to introduce the state-of-the-art concerning this issue and many complementary applications are presented.

Computational Fluid Dynamics for Engineers and Scientists

Author: Sreenivas Jayanti
Publisher: Springer
ISBN: 9789402412178
Release Date: 2018-01-09
Genre: Technology & Engineering

This book offers a practical, application-oriented introduction to computational fluid dynamics (CFD), with a focus on the concepts and principles encountered when using CFD in industry. Presuming no more knowledge than college-level understanding of the core subjects, the book puts together all the necessary topics to give the reader a comprehensive introduction to CFD. It includes discussion of the derivation of equations, grid generation and solution algorithms for compressible, incompressible and hypersonic flows. The final two chapters of the book are intended for the more advanced user. In the penultimate chapter, the special difficulties that arise while solving practical problems are addressed. Distinction is made between complications arising out of geometrical complexity and those arising out of the complexity of the physics (and chemistry) of the problem. The last chapter contains a brief discussion of what can be considered as the Holy Grail of CFD, namely, finding the optimal design of a fluid flow component. A number of problems are given at the end of each chapter to reinforce the concepts and ideas discussed in that chapter. CFD has come of age and is widely used in industry as well as in academia as an analytical tool to investigate a wide range of fluid flow problems. This book is written for two groups: for those students who are encountering CFD for the first time in the form of a taught lecture course, and for those practising engineers and scientists who are already using CFD as an analysis tool in their professions but would like to deepen and broaden their understanding of the subject.

Fluid Dynamics

Author: C. Pozrikidis
Publisher: Springer
ISBN: 9781489979919
Release Date: 2016-08-23
Genre: Technology & Engineering

This book provides an accessible introduction to the basic theory of fluid mechanics and computational fluid dynamics (CFD) from a modern perspective that unifies theory and numerical computation. Methods of scientific computing are introduced alongside with theoretical analysis and MATLAB® codes are presented and discussed for a broad range of topics: from interfacial shapes in hydrostatics, to vortex dynamics, to viscous flow, to turbulent flow, to panel methods for flow past airfoils. The third edition includes new topics, additional examples, solved and unsolved problems, and revised images. It adds more computational algorithms and MATLAB programs. It also incorporates discussion of the latest version of the fluid dynamics software library FDLIB, which is freely available online. FDLIB offers an extensive range of computer codes that demonstrate the implementation of elementary and advanced algorithms and provide an invaluable resource for research, teaching, classroom instruction, and self-study. This book is a must for students in all fields of engineering, computational physics, scientific computing, and applied mathematics. It can be used in both undergraduate and graduate courses in fluid mechanics, aerodynamics, and computational fluid dynamics. The audience includes not only advanced undergraduate and entry-level graduate students, but also a broad class of scientists and engineers with a general interest in scientific computing.

Fundamentals of Computational Fluid Dynamics

Author: H. Lomax
Publisher: Springer Science & Business Media
ISBN: 9783662046548
Release Date: 2013-03-09
Genre: Science

The chosen semi-discrete approach of a reduction procedure of partial differential equations to ordinary differential equations and finally to difference equations gives the book its distinctiveness and provides a sound basis for a deep understanding of the fundamental concepts in computational fluid dynamics.