The Principle of Least Action

Author: Alberto Rojo
Publisher: Cambridge University Press
ISBN: 9780521869027
Release Date: 2018-03-31
Genre: Mathematics

This text brings history and the key fields of physics together to present a unique technical discussion of the principles of least action.

The Lazy Universe

Author: Jennifer Coopersmith
Publisher: Oxford University Press
ISBN: 9780191060731
Release Date: 2017-05-11
Genre: Science

This is a rare book on a rare topic: it is about 'action' and the Principle of Least Action. A surprisingly well-kept secret, these ideas are at the heart of physical science and engineering. Physics is well known as being concerned with grand conservatory principles (e.g. the conservation of energy) but equally important is the optimization principle (such as getting somewhere in the shortest time or with the least resistance). The book explains: why an optimization principle underlies physics, what action is, what `the Hamiltonian' is, and how new insights into energy, space, and time arise. It assumes some background in the physical sciences, at the level of undergraduate science, but it is not a textbook. The requisite derivations and worked examples are given but may be skim-read if desired. The author draws from Cornelius Lanczos's book "The Variational Principles of Mechanics" (1949 and 1970). Lanczos was a brilliant mathematician and educator, but his book was for a postgraduate audience. The present book is no mere copy with the difficult bits left out - it is original, and a popularization. It aims to explain ideas rather than achieve technical competence, and to show how Least Action leads into the whole of physics.

The Principle of Least Action in Geometry and Dynamics

Author: Karl Friedrich Siburg
Publisher: Springer
ISBN: 9783540409854
Release Date: 2004-04-30
Genre: Mathematics

New variational methods by Aubry, Mather, and Mane, discovered in the last twenty years, gave deep insight into the dynamics of convex Lagrangian systems. This book shows how this Principle of Least Action appears in a variety of settings (billiards, length spectrum, Hofer geometry, modern symplectic geometry). Thus, topics from modern dynamical systems and modern symplectic geometry are linked in a new and sometimes surprising way. The central object is Mather’s minimal action functional. The level is for graduate students onwards, but also for researchers in any of the subjects touched in the book.

Feynman s Thesis

Author: Richard Phillips Feynman
Publisher: World Scientific
ISBN: 9789812563668
Release Date: 1942
Genre: Science

Richard Feynman's never previously published doctoral thesis formed the heart of much of his brilliant and profound work in theoretical physics. Entitled ?The Principle of Least Action in Quantum Mechanics," its original motive was to quantize the classical action-at-a-distance electrodynamics. Because that theory adopted an overall space?time viewpoint, the classical Hamiltonian approach used in the conventional formulations of quantum theory could not be used, so Feynman turned to the Lagrangian function and the principle of least action as his points of departure.The result was the path integral approach, which satisfied ? and transcended ? its original motivation, and has enjoyed great success in renormalized quantum field theory, including the derivation of the ubiquitous Feynman diagrams for elementary particles. Path integrals have many other applications, including atomic, molecular, and nuclear scattering, statistical mechanics, quantum liquids and solids, Brownian motion, and noise theory. It also sheds new light on fundamental issues like the interpretation of quantum theory because of its new overall space?time viewpoint.The present volume includes Feynman's Princeton thesis, the related review article ?Space?Time Approach to Non-Relativistic Quantum Mechanics? [Reviews of Modern Physics 20 (1948), 367?387], Paul Dirac's seminal paper ?The Lagrangian in Quantum Mechanics'' [Physikalische Zeitschrift der Sowjetunion, Band 3, Heft 1 (1933)], and an introduction by Laurie M Brown.

An Introduction to Lagrangian Mechanics

Author: Alain J Brizard
Publisher: World Scientific Publishing Company
ISBN: 9789814623643
Release Date: 2014-11-28
Genre: Science

An Introduction to Lagrangian Mechanics begins with a proper historical perspective on the Lagrangian method by presenting Fermat's Principle of Least Time (as an introduction to the Calculus of Variations) as well as the principles of Maupertuis, Jacobi, and d'Alembert that preceded Hamilton's formulation of the Principle of Least Action, from which the Euler–Lagrange equations of motion are derived. Other additional topics not traditionally presented in undergraduate textbooks include the treatment of constraint forces in Lagrangian Mechanics; Routh's procedure for Lagrangian systems with symmetries; the art of numerical analysis for physical systems; variational formulations for several continuous Lagrangian systems; an introduction to elliptic functions with applications in Classical Mechanics; and Noncanonical Hamiltonian Mechanics and perturbation theory. The Second Edition includes a larger selection of examples and problems (with hints) in each chapter and continues the strong emphasis of the First Edition on the development and application of mathematical methods (mostly calculus) to the solution of problems in Classical Mechanics. New material has been added to most chapters. For example, a new derivation of the Noether theorem for discrete Lagrangian systems is given and a modified Rutherford scattering problem is solved exactly to show that the total scattering cross section associated with a confined potential (i.e., which vanishes beyond a certain radius) yields the hard-sphere result. The Frenet-Serret formulas for the Coriolis-corrected projectile motion are presented, where the Frenet-Serret torsion is shown to be directly related to the Coriolis deflection, and a new treatment of the sleeping-top problem is given.

The Principle of Least Action Primary Source Edition

Author: Philip Edward Bertrand Jourdain
Publisher: Nabu Press
ISBN: 1294678264
Release Date: 2014-02
Genre:

This is a reproduction of a book published before 1923. This book may have occasional imperfections such as missing or blurred pages, poor pictures, errant marks, etc. that were either part of the original artifact, or were introduced by the scanning process. We believe this work is culturally important, and despite the imperfections, have elected to bring it back into print as part of our continuing commitment to the preservation of printed works worldwide. We appreciate your understanding of the imperfections in the preservation process, and hope you enjoy this valuable book. ++++ The below data was compiled from various identification fields in the bibliographic record of this title. This data is provided as an additional tool in helping to ensure edition identification: ++++ The Principle Of Least Action Philip Edward Bertrand Jourdain Open Court Publishing Company, 1913 Science; Mechanics; Dynamics; General; Least action; Science / Mechanics / Dynamics / General

Variational Principles in Dynamics and Quantum Theory

Author: Wolfgang Yourgrau
Publisher: Courier Corporation
ISBN: 9780486151137
Release Date: 2012-04-26
Genre: Science

DIVHistorical, theoretical survey with many insights, much hard-to-find material. Hamilton’s principle, Hamilton-Jacobi equation, etc. /div

The Principle of Least Action

Author: Philip Edward Bertrand Jourdain
Publisher: Franklin Classics
ISBN: 034349051X
Release Date: 2018-10-16
Genre:

This work has been selected by scholars as being culturally important and is part of the knowledge base of civilization as we know it. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. To ensure a quality reading experience, this work has been proofread and republished using a format that seamlessly blends the original graphical elements with text in an easy-to-read typeface. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Variational Principles in Classical Mechanics

Author: Douglas Cline
Publisher:
ISBN: 099883727X
Release Date: 2018-08
Genre:

Two dramatically different philosophical approaches to classical mechanics were proposed during the 17th - 18th centuries. Newton developed his vectorial formulation that uses time-dependent differential equations of motion to relate vector observables like force and rate of change of momentum. Euler, Lagrange, Hamilton, and Jacobi, developed powerful alternative variational formulations based on the assumption that nature follows the principle of least action. These variational formulations now play a pivotal role in science and engineering.This book introduces variational principles and their application to classical mechanics. The relative merits of the intuitive Newtonian vectorial formulation, and the more powerful variational formulations are compared. Applications to a wide variety of topics illustrate the intellectual beauty, remarkable power, and broad scope provided by use of variational principles in physics.The second edition adds discussion of the use of variational principles applied to the following topics:(1) Systems subject to initial boundary conditions(2) The hierarchy of related formulations based on action, Lagrangian, Hamiltonian, and equations of motion, to systems that involve symmetries.(3) Non-conservative systems.(4) Variable-mass systems.(5) The General Theory of Relativity.Douglas Cline is a Professor of Physics in the Department of Physics and Astronomy, University of Rochester, Rochester, New York.

The Variational Principles of Mechanics

Author: Cornelius Lanczos
Publisher: Courier Corporation
ISBN: 9780486134703
Release Date: 2012-04-24
Genre: Science

Philosophic, less formalistic approach to analytical mechanics offers model of clear, scholarly exposition at graduate level with coverage of basics, calculus of variations, principle of virtual work, equations of motion, more.

Variational and Extremum Principles in Macroscopic Systems

Author: Stanislaw Sieniutycz
Publisher: Elsevier
ISBN: 0080456146
Release Date: 2010-07-07
Genre: Science

Recent years have seen a growing trend to derive models of macroscopic phenomena encountered in the fields of engineering, physics, chemistry, ecology, self-organisation theory and econophysics from various variational or extremum principles. Through the link between the integral extremum of a functional and the local extremum of a function (explicit, for example, in the Pontryagin’s maximum principle variational and extremum principles are mutually related. Thus it makes sense to consider them within a common context. The main goal of Variational and Extremum Principles in Macroscopic Systems is to collect various mathematical formulations and examples of physical reasoning that involve both basic theoretical aspects and applications of variational and extremum approaches to systems of the macroscopic world. The first part of the book is focused on the theory, whereas the second focuses on applications. The unifying variational approach is used to derive the balance or conservation equations, phenomenological equations linking fluxes and forces, equations of change for processes with coupled transfer of energy and substance, and optimal conditions for energy management. A unique multidisciplinary synthesis of variational and extremum principles in theory and application A comprehensive review of current and past achievements in variational formulations for macroscopic processes Uses Lagrangian and Hamiltonian formalisms as a basis for the exposition of novel approaches to transfer and conversion of thermal, solar and chemical energy