Recreations in the Theory of Numbers

Author: Albert H. Beiler
Publisher: Courier Corporation
ISBN: 9780486210964
Release Date: 1964
Genre: Games

Number theory proves to be a virtually inexhaustible source of intriguing puzzle problems. Includes divisors, perfect numbers, the congruences of Gauss, scales of notation, the Pell equation, more. Solutions to all problems.

Elementary Theory of Numbers

Author: William J. LeVeque
Publisher: Courier Corporation
ISBN: 9780486150765
Release Date: 2014-01-15
Genre: Mathematics

Superb introduction to Euclidean algorithm and its consequences, congruences, continued fractions, powers of an integer modulo m, Gaussian integers, Diophantine equations, more. Problems, with answers. Bibliography.

Number Theory

Author: Titu Andreescu
Publisher: Springer Science & Business Media
ISBN: 0817646450
Release Date: 2009-06-12
Genre: Mathematics

This introductory textbook takes a problem-solving approach to number theory, situating each concept within the framework of an example or a problem for solving. Starting with the essentials, the text covers divisibility, unique factorization, modular arithmetic and the Chinese Remainder Theorem, Diophantine equations, binomial coefficients, Fermat and Mersenne primes and other special numbers, and special sequences. Included are sections on mathematical induction and the pigeonhole principle, as well as a discussion of other number systems. By emphasizing examples and applications the authors motivate and engage readers.

Ergodic Theory

Author: Manfred Einsiedler
Publisher: Springer Science & Business Media
ISBN: 0857290215
Release Date: 2010-09-11
Genre: Mathematics

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.

Elements of Algebra

Author: John Stillwell
Publisher: Springer Science & Business Media
ISBN: 9781475739763
Release Date: 2013-04-18
Genre: Mathematics

Algebra is abstract mathematics - let us make no bones about it - yet it is also applied mathematics in its best and purest form. It is not abstraction for its own sake, but abstraction for the sake of efficiency, power and insight. Algebra emerged from the struggle to solve concrete, physical problems in geometry, and succeeded after 2000 years of failure by other forms of mathematics. It did this by exposing the mathematical structure of geometry, and by providing the tools to analyse it. This is typical of the way algebra is applied; it is the best and purest form of application because it reveals the simplest and most universal mathematical structures. The present book aims to foster a proper appreciation of algebra by showing abstraction at work on concrete problems, the classical problems of construction by straightedge and compass. These problems originated in the time of Euclid, when geometry and number theory were paramount, and were not solved until th the 19 century, with the advent of abstract algebra. As we now know, alge bra brings about a unification of geometry, number theory and indeed most branches of mathematics. This is not really surprising when one has a historical understanding of the subject, which I also hope to impart.

Number Theory

Author: André Weil
Publisher: Springer Science & Business Media
ISBN: 9780817645717
Release Date: 2009-05-21
Genre: Mathematics

This book presents a historical overview of number theory. It examines texts that span some thirty-six centuries of arithmetical work, from an Old Babylonian tablet to Legendre’s Essai sur la Théorie des Nombres, written in 1798. Coverage employs a historical approach in the analysis of problems and evolving methods of number theory and their significance within mathematics. The book also takes the reader into the workshops of four major authors of modern number theory: Fermat, Euler, Lagrange and Legendre and presents a detailed and critical examination of their work.


Author: Kristopher Tapp
Publisher: Springer Science & Business Media
ISBN: 1461402999
Release Date: 2011-12-02
Genre: Mathematics

This textbook is perfect for a math course for non-math majors, with the goal of encouraging effective analytical thinking and exposing students to elegant mathematical ideas. It includes many topics commonly found in sampler courses, like Platonic solids, Euler’s formula, irrational numbers, countable sets, permutations, and a proof of the Pythagorean Theorem. All of these topics serve a single compelling goal: understanding the mathematical patterns underlying the symmetry that we observe in the physical world around us. The exposition is engaging, precise and rigorous. The theorems are visually motivated with intuitive proofs appropriate for the intended audience. Students from all majors will enjoy the many beautiful topics herein, and will come to better appreciate the powerful cumulative nature of mathematics as these topics are woven together into a single fascinating story about the ways in which objects can be symmetric.

The Knot Book

Author: Colin Conrad Adams
Publisher: American Mathematical Soc.
ISBN: 9780821836781
Release Date: 2004
Genre: Mathematics

Knots are familiar objects. We use them to moor our boats, to wrap our packages, to tie our shoes. Yet the mathematical theory of knots quickly leads to deep results in topology and geometry. The Knot Book is an introduction to this rich theory, starting from our familiar understanding of knots and a bit of college algebra and finishing with exciting topics of current research. The Knot Book is also about the excitement of doing mathematics. Colin Adams engages the reader with fascinating examples, superb figures, and thought-provoking ideas. He also presents the remarkable applications of knot theory to modern chemistry, biology, and physics. This is a compelling book that will comfortably escort you into the marvelous world of knot theory. Whether you are a mathematics student, someone working in a related field, or an amateur mathematician, you will find much of interest in The Knot Book.

Introduction to the Theory of Numbers

Author: Harold N. Shapiro
Publisher: Courier Corporation
ISBN: 9780486466699
Release Date: 1983
Genre: Mathematics

Starting with the fundamentals of number theory, this text advances to an intermediate level. Author Harold N. Shapiro, Professor Emeritus of Mathematics at New York University's Courant Institute, addresses this treatment toward advanced undergraduates and graduate students. Selected chapters, sections, and exercises are appropriate for undergraduate courses. The first five chapters focus on the basic material of number theory, employing special problems, some of which are of historical interest. Succeeding chapters explore evolutions from the notion of congruence, examine a variety of applications related to counting problems, and develop the roots of number theory. Two "do-it-yourself" chapters offer readers the chance to carry out small-scale mathematical investigations that involve material covered in previous chapters.


Author: Ivan Niven
Publisher: John Wiley & Sons
ISBN: 8126518111
Release Date: 2008-08-01
Genre: Number theory

· Divisibility· Congruences· Quadratic Reciprocity and Quadratic Forms· Some Functions of Number Theory· Some Diophantine Equations· Farey Fractions and Irrational Numbers· Simple Continued Fractions· Primes and Multiplicative Number Theory· Algebraic Numbers· The Partition Function · The Density of Sequences of Integers

Probability Theory

Author: Y. A. Rozanov
Publisher: Courier Corporation
ISBN: 9780486321141
Release Date: 2013-05-27
Genre: Mathematics

This clear exposition begins with basic concepts and moves on to combination of events, dependent events and random variables, Bernoulli trials and the De Moivre-Laplace theorem, and more. Includes 150 problems, many with answers.

Introductory Complex Analysis

Author: Richard A. Silverman
Publisher: Courier Corporation
ISBN: 9780486318523
Release Date: 2013-04-15
Genre: Mathematics

Shorter version of Markushevich's Theory of Functions of a Complex Variable, appropriate for advanced undergraduate and graduate courses in complex analysis. More than 300 problems, some with hints and answers. 1967 edition.