Theory and Application of Infinite Series

Author: Konrad Knopp
Publisher: Courier Corporation
ISBN: 9780486318615
Release Date: 2013-04-26
Genre: Mathematics

Unusually clear and interesting classic covers real numbers and sequences, foundations of the theory of infinite series and development of the theory (series of valuable terms, Euler's summation formula, asymptotic expansions, other topics). Includes exercises.

Theorie und Anwendung der Unendlichen Reihen

Author: Konrad Knopp
Publisher: Springer-Verlag
ISBN: 9783662419977
Release Date: 2013-12-11
Genre: Mathematics

Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.

Theorie und Anwendung der unendlichen Reihen

Author: Konrad Knopp
Publisher: Springer
ISBN: 3540591117
Release Date: 1995-11-14
Genre: Mathematics

Als dieses Buch zum ersten Mal erschien (als Band 2 der neugegründeten Grundlehren), lobte man einhellig die Anlage und den Stil des Bandes. Selten nur blieb ein Buch über sechs Jahrzehnte hinweg wegen seiner hervorragenden Didaktik und seiner anregenden Formulierungen so gefragt. In dieser neuen Auflage beschreibt Wolfgang Walter, der Knopp noch persönlich kannte, die Wirkungsgeschichte und Bedeutung von Knopps klassischer Einführung in die Theorie und Anwendung der unendlichen Reihen.

Theory and Application of Infinite Series

Author: Konrad Knopp
Publisher: Courier Corporation
ISBN: 0486661652
Release Date: 1951
Genre: Mathematics

This unusually clear and interesting classic offers a thorough and reliable treatment of an important branch of higher analysis. The work covers real numbers and sequences, foundations of the theory of infinite series, and development of the theory (series of valuable terms, Euler's summation formula, asymptotic expansions, and other topics). Exercises throughout. Ideal for self-study.

Theory and Application of Infinite Series Scholar s Choice Edition

Author: Konrad Knopp
Publisher:
ISBN: 1297031687
Release Date: 2015-02-15
Genre:

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work.As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.

Real Infinite Series

Author: Daniel D. Bonar
Publisher: MAA
ISBN: 0883857456
Release Date: 2006-04-06
Genre: Mathematics

An introductory treatment of infinite series of real numbers, from basic definitions and tests to advanced results.

Infinite Series

Author: Isidore Isaac Hirschman
Publisher: Courier Corporation
ISBN: 9780486798240
Release Date: 2014-08-18
Genre: Mathematics

Text for advanced undergraduate and graduate students examines Taylor series, Fourier series, uniform convergence, power series, and real analytic functions. Appendix covers set and sequence operations and continuous functions. 1962 edition.

Elements of the Theory of Functions

Author: Konrad Knopp
Publisher: Courier Dover Publications
ISBN: 9780486165608
Release Date: 2016-10-05
Genre: Mathematics

Well-known book provides a clear, concise review of complex numbers and their geometric representation; linear functions and circular transformations; sets, sequences, and power series; analytic functions and conformal mapping; and elementary functions. 1952 edition.

The Cauchy Method of Residues

Author: Dragoslav S. Mitrinovic
Publisher: Springer Science & Business Media
ISBN: 9789401120005
Release Date: 2013-12-01
Genre: Mathematics

Volume 1, i. e. the monograph The Cauchy Method of Residues - Theory and Applications published by D. Reidel Publishing Company in 1984 is the only book that covers all known applications of the calculus of residues. They range from the theory of equations, theory of numbers, matrix analysis, evaluation of real definite integrals, summation of finite and infinite series, expansions of functions into infinite series and products, ordinary and partial differential equations, mathematical and theoretical physics, to the calculus of finite differences and difference equations. The appearance of Volume 1 was acknowledged by the mathematical community. Favourable reviews and many private communications encouraged the authors to continue their work, the result being the present book, Volume 2, a sequel to Volume 1. We mention that Volume 1 is a revised, extended and updated translation of the book Cauchyjev raeun ostataka sa primenama published in Serbian by Nau~na knjiga, Belgrade in 1978, whereas the greater part of Volume 2 is based upon the second Serbian edition of the mentioned book from 1991. Chapter 1 is introductory while Chapters 2 - 6 are supplements to the corresponding chapters of Volume 1. They mainly contain results missed during the preparation of Volume 1 and also some new results published after 1982. Besides, certain topics which were only briefly mentioned in Volume 1 are treated here in more detail.

Practical Extrapolation Methods

Author: Avram Sidi
Publisher: Cambridge University Press
ISBN: 0521661595
Release Date: 2003-06-05
Genre: Computers

This book is concerned with the coherent treatment, including the derivation, analysis, and applications, of the most useful scalar extrapolation methods. Its importance is rooted in the fact that the methods it discusses are geared towards problems that arise commonly in scientific and engineering disciplines. It differs from existing books on the subject in that it concentrates on the most powerful nonlinear methods, presents in-depth treatments of them, and shows which methods are most effective for different classes of practical nontrivial problems, and also shows how to apply these methods to obtain best results.

Einf hrung in die Geometrie und Topologie

Author: Werner Ballmann
Publisher: Springer-Verlag
ISBN: 9783034809016
Release Date: 2015-02-19
Genre: Mathematics

Das Buch bietet eine Einführung in die Topologie, Differentialtopologie und Differentialgeometrie. Es basiert auf Manuskripten, die in verschiedenen Vorlesungszyklen erprobt wurden. Im ersten Kapitel werden grundlegende Begriffe und Resultate aus der mengentheoretischen Topologie bereitgestellt. Eine Ausnahme hiervon bildet der Jordansche Kurvensatz, der für Polygonzüge bewiesen wird und eine erste Idee davon vermitteln soll, welcher Art tiefere topologische Probleme sind. Im zweiten Kapitel werden Mannigfaltigkeiten und Liesche Gruppen eingeführt und an einer Reihe von Beispielen veranschaulicht. Diskutiert werden auch Tangential- und Vektorraumbündel, Differentiale, Vektorfelder und Liesche Klammern von Vektorfeldern. Weiter vertieft wird diese Diskussion im dritten Kapitel, in dem die de Rhamsche Kohomologie und das orientierte Integral eingeführt und der Brouwersche Fixpunktsatz, der Jordan-Brouwersche Zerlegungssatz und die Integralformel von Stokes bewiesen werden. Das abschließende vierte Kapitel ist den Grundlagen der Differentialgeometrie gewidmet. Entlang der Entwicklungslinien, die die Geometrie der Kurven und Untermannigfaltigkeiten in Euklidischen Räumen durchlaufen hat, werden Zusammenhänge und Krümmung, die zentralen Konzepte der Differentialgeometrie, diskutiert. Den Höhepunkt bilden die Gaussgleichungen, die Version des theorema egregium von Gauss für Untermannigfaltigkeiten beliebiger Dimension und Kodimension. Das Buch richtet sich in erster Linie an Mathematik- und Physikstudenten im zweiten und dritten Studienjahr und ist als Vorlage für ein- oder zweisemestrige Vorlesungen geeignet.