Time of Flight and Structured Light Depth Cameras

Author: Pietro Zanuttigh
Publisher: Springer
ISBN: 9783319309736
Release Date: 2016-05-24
Genre: Computers

This book provides a comprehensive overview of the key technologies and applications related to new cameras that have brought 3D data acquisition to the mass market. It covers both the theoretical principles behind the acquisition devices and the practical implementation aspects of the computer vision algorithms needed for the various applications. Real data examples are used in order to show the performances of the various algorithms. The performance and limitations of the depth camera technology are explored, along with an extensive review of the most effective methods for addressing challenges in common applications. Applications covered in specific detail include scene segmentation, 3D scene reconstruction, human pose estimation and tracking and gesture recognition. This book offers students, practitioners and researchers the tools necessary to explore the potential uses of depth data in light of the expanding number of devices available for sale. It explores the impact of these devices on the rapidly growing field of depth-based computer vision.

Time of Flight Cameras

Author: Miles Hansard
Publisher: Springer Science & Business Media
ISBN: 9781447146582
Release Date: 2012-11-06
Genre: Computers

Time-of-flight (TOF) cameras provide a depth value at each pixel, from which the 3D structure of the scene can be estimated. This new type of active sensor makes it possible to go beyond traditional 2D image processing, directly to depth-based and 3D scene processing. Many computer vision and graphics applications can benefit from TOF data, including 3D reconstruction, activity and gesture recognition, motion capture and face detection. It is already possible to use multiple TOF cameras, in order to increase the scene coverage, and to combine the depth data with images from several colour cameras. Mixed TOF and colour systems can be used for computational photography, including full 3D scene modelling, as well as for illumination and depth-of-field manipulations. This work is a technical introduction to TOF sensors, from architectural and design issues, to selected image processing and computer vision methods.

Time of Flight and Structured Light Depth Cameras

Author: Pietro Zanuttigh
Publisher: Springer
ISBN: 3319809334
Release Date: 2018-05-30
Genre: Computers

This book provides a comprehensive overview of the key technologies and applications related to new cameras that have brought 3D data acquisition to the mass market. It covers both the theoretical principles behind the acquisition devices and the practical implementation aspects of the computer vision algorithms needed for the various applications. Real data examples are used in order to show the performances of the various algorithms. The performance and limitations of the depth camera technology are explored, along with an extensive review of the most effective methods for addressing challenges in common applications. Applications covered in specific detail include scene segmentation, 3D scene reconstruction, human pose estimation and tracking and gesture recognition. This book offers students, practitioners and researchers the tools necessary to explore the potential uses of depth data in light of the expanding number of devices available for sale. It explores the impact of these devices on the rapidly growing field of depth-based computer vision.

Time of Flight and Depth Imaging Sensors Algorithms and Applications

Author: Marcin Grzegorzek
Publisher: Springer
ISBN: 9783642449642
Release Date: 2013-11-09
Genre: Computers

Cameras for 3D depth imaging, using either time-of-flight (ToF) or structured light sensors, have received a lot of attention recently and have been improved considerably over the last few years. The present techniques make full-range 3D data available at video frame rates, and thus pave the way for a much broader application of 3D vision systems. A series of workshops have closely followed the developments within ToF imaging over the years. Today, depth imaging workshops can be found at every major computer vision conference. The papers presented in this volume stem from a seminar on Time-of-Flight Imaging held at Schloss Dagstuhl in October 2012. They cover all aspects of ToF depth imaging, from sensors and basic foundations, to algorithms for low level processing, to important applications that exploit depth imaging. In addition, this book contains the proceedings of a workshop on Imaging New Modalities, which was held at the German Conference on Pattern Recognition in Saarbrücken, Germany, in September 2013. A state-of-the-art report on the Kinect sensor and its applications is followed by two reports on local and global ToF motion compensation and a novel depth capture system using a plenoptic multi-lens multi-focus camera sensor.

TOF Range Imaging Cameras

Author: Fabio Remondino
Publisher: Springer Science & Business Media
ISBN: 9783642275234
Release Date: 2013-04-09
Genre: Technology & Engineering

Today the cost of solid-state two-dimensional imagers has dramatically dropped, introducing low cost systems on the market suitable for a variety of applications, including both industrial and consumer products. However, these systems can capture only a two-dimensional projection (2D), or intensity map, of the scene under observation, losing a variable of paramount importance, i.e., the arrival time of the impinging photons. Time-Of-Flight (TOF) Range-Imaging (TOF) is an emerging sensor technology able to deliver, at the same time, depth and intensity maps of the scene under observation. Featuring different sensor resolutions, RIM cameras serve a wide community with a lot of applications like monitoring, architecture, life sciences, robotics, etc. This book will bring together experts from the sensor and metrology side in order to collect the state-of-art researchers in these fields working with RIM cameras. All the aspects in the acquisition and processing chain will be addressed, from recent updates concerning the photo-detectors, to the analysis of the calibration techniques, giving also a perspective onto new applications domains.

Computer Vision and Machine Learning with RGB D Sensors

Author: Ling Shao
Publisher: Springer
ISBN: 9783319086514
Release Date: 2014-07-14
Genre: Computers

This book presents an interdisciplinary selection of cutting-edge research on RGB-D based computer vision. Features: discusses the calibration of color and depth cameras, the reduction of noise on depth maps and methods for capturing human performance in 3D; reviews a selection of applications which use RGB-D information to reconstruct human figures, evaluate energy consumption and obtain accurate action classification; presents an approach for 3D object retrieval and for the reconstruction of gas flow from multiple Kinect cameras; describes an RGB-D computer vision system designed to assist the visually impaired and another for smart-environment sensing to assist elderly and disabled people; examines the effective features that characterize static hand poses and introduces a unified framework to enforce both temporal and spatial constraints for hand parsing; proposes a new classifier architecture for real-time hand pose recognition and a novel hand segmentation and gesture recognition system.

High Speed 3D Imaging with Digital Fringe Projection Techniques

Author: Song Zhang
Publisher: CRC Press
ISBN: 9781482234343
Release Date: 2016-04-06
Genre: Computers

Digital fringe projection (DFP) techniques are used for non-contact shape measurement of 3D images. In the rapidly expanding field of 3D high-speed imaging, the demand for DFP continues to grow due to the technology’s fast speed, flexibility, low cost, and high accuracy. High-Speed 3D Imaging with Digital Fringe Projection Techniques discusses the generation of digital fringe with digital video projection devices, covering a variety of core technical aspects. The book begins by establishing the theoretical foundations of fringe pattern analysis, reviewing various 3D imaging techniques while highlighting the advantages of DFP. The author then: Describes the differences between digital light processing (DLP), liquid crystal display (LCD), and liquid crystal on silicon (LCoS) Explains how to unwrap phase maps temporally and spatially Shows how to generate fringe patterns with video projectors Demonstrates how to convert phase to coordinates through system calibrations Provides a detailed example of a built-from-scratch 3D imaging system Incorporating valuable insights gained during the author’s 15+ years of 3D imaging research, High-Speed 3D Imaging with Digital Fringe Projection Techniques illuminates the pathway to advancement in high-speed 3D optical imaging using DFP.

Consumer Depth Cameras for Computer Vision

Author: Andrea Fossati
Publisher: Springer Science & Business Media
ISBN: 9781447146391
Release Date: 2012-10-04
Genre: Computers

The potential of consumer depth cameras extends well beyond entertainment and gaming, to real-world commercial applications. This authoritative text reviews the scope and impact of this rapidly growing field, describing the most promising Kinect-based research activities, discussing significant current challenges, and showcasing exciting applications. Features: presents contributions from an international selection of preeminent authorities in their fields, from both academic and corporate research; addresses the classic problem of multi-view geometry of how to correlate images from different viewpoints to simultaneously estimate camera poses and world points; examines human pose estimation using video-rate depth images for gaming, motion capture, 3D human body scans, and hand pose recognition for sign language parsing; provides a review of approaches to various recognition problems, including category and instance learning of objects, and human activity recognition; with a Foreword by Dr. Jamie Shotton.

Diffractive Optics

Author: Donald C. O'Shea
Publisher: SPIE Press
ISBN: 0819451711
Release Date: 2004
Genre: Technology & Engineering

This book provides the reader with the broad range of materials that were discussed in a series of short courses presented at Georgia Tech on the design, fabrication, and testing of diffractive optical elements (DOEs). Although there are not long derivations or detailed methods for specific engineering calculations, the reader should be familiar and comfortable with basic computational techniques. This text is not a 'cookbook' for producing DOEs, but it should provide readers with sufficient information to assess whether this technology would benefit their work, and to understand the requirements for using the concepts and techniques presented by the authors.

VCSELs

Author: Rainer Michalzik
Publisher: Springer
ISBN: 9783642249860
Release Date: 2012-10-16
Genre: Science

The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

Applied Digital Optics

Author: Bernard C. Kress
Publisher: John Wiley & Sons
ISBN: 0470022647
Release Date: 2009-11-04
Genre: Science

Miniaturization and mass replications have begun to lead the optical industry in the transition from traditional analog to novel digital optics. As digital optics enter the realm of mainstream technology through the worldwide sale of consumer electronic devices, this timely book aims to present the topic of digital optics in a unified way. Ranging from micro-optics to nanophotonics, and design to fabrication through to integration in final products, it reviews the various physical implementations of digital optics in either micro-refractives, waveguide (planar lightwave chips), diffractive and hybrid optics or sub-wavelength structures (resonant gratings, surface plasmons, photonic crystals and metamaterials). Finally, it presents a comprehensive list of industrial and commercial applications that are taking advantage of the unique properties of digital optics. Applied Digital Optics is aimed primarily at optical engineers and product development and technical marketing managers; it is also of interest to graduate-level photonics students and micro-optic foundries. Helps optical engineers review and choose the appropriate software tools to design, model and generate fabrication files. Gives product managers access to an exhaustive list of applications available in today’s market for integrating such digital optics, as well as where the next potential application of digital optics might be. Provides a broad view for technical marketing managers in all aspects of digital optics, and how such optics can be classified. Explains the numerical implementation of optical design and modelling techniques. Enables micro-optics foundries to integrate the latest fabrication and replication techniques, and accordingly fine tune their own fabrication processes.

Time of Flight Cameras and Microsoft KinectTM

Author: Carlo Dal Mutto
Publisher: Springer Science & Business Media
ISBN: 9781461438076
Release Date: 2012-03-27
Genre: Technology & Engineering

Time-of-Flight Cameras and Microsoft KinectTM closely examines the technology and general characteristics of time-of-flight range cameras, and outlines the best methods for maximizing the data captured by these devices. This book also analyzes the calibration issues that some end-users may face when using these type of cameras for research, and suggests methods for improving the real-time 3D reconstruction of dynamic and static scenes. Time-of-Flight Cameras and Microsoft KinectTM is intended for researchers and advanced-level students as a reference guide for time-of-flight cameras. Practitioners working in a related field will also find the book valuable.

3D Surface Reconstruction

Author: Francesco Bellocchio
Publisher: Springer Science & Business Media
ISBN: 9781461456322
Release Date: 2012-10-28
Genre: Computers

3D Surface Reconstruction: Multi-Scale Hierarchical Approaches presents methods to model 3D objects in an incremental way so as to capture more finer details at each step. The configuration of the model parameters, the rationale and solutions are described and discussed in detail so the reader has a strong understanding of the methodology. Modeling starts from data captured by 3D digitizers and makes the process even more clear and engaging. Innovative approaches, based on two popular machine learning paradigms, namely Radial Basis Functions and the Support Vector Machines, are also introduced. These paradigms are innovatively extended to a multi-scale incremental structure, based on a hierarchical scheme. The resulting approaches allow readers to achieve high accuracy with limited computational complexity, and makes the approaches appropriate for online, real-time operation. Applications can be found in any domain in which regression is required. 3D Surface Reconstruction: Multi-Scale Hierarchical Approaches is designed as a secondary text book or reference for advanced-level students and researchers in computer science. This book also targets practitioners working in computer vision or machine learning related fields.

3D Computer Vision

Author: Christian Wöhler
Publisher: Springer Science & Business Media
ISBN: 9781447141501
Release Date: 2012-07-23
Genre: Computers

This indispensable text introduces the foundations of three-dimensional computer vision and describes recent contributions to the field. Fully revised and updated, this much-anticipated new edition reviews a range of triangulation-based methods, including linear and bundle adjustment based approaches to scene reconstruction and camera calibration, stereo vision, point cloud segmentation, and pose estimation of rigid, articulated, and flexible objects. Also covered are intensity-based techniques that evaluate the pixel grey values in the image to infer three-dimensional scene structure, and point spread function based approaches that exploit the effect of the optical system. The text shows how methods which integrate these concepts are able to increase reconstruction accuracy and robustness, describing applications in industrial quality inspection and metrology, human-robot interaction, and remote sensing.

3D Biometrics

Author: David Zhang
Publisher: Springer Science & Business Media
ISBN: 9781461474005
Release Date: 2013-05-31
Genre: Computers

Automatic personal authentication using biometric information is becoming more essential in applications of public security, access control, forensics, banking, etc. Many kinds of biometric authentication techniques have been developed based on different biometric characteristics. However, most of the physical biometric recognition techniques are based on two dimensional (2D) images, despite the fact that human characteristics are three dimensional (3D) surfaces. Recently, 3D techniques have been applied to biometric applications such as 3D face, 3D palmprint, 3D fingerprint, and 3D ear recognition. This book introduces four typical 3D imaging methods, and presents some case studies in the field of 3D biometrics. This book also includes many efficient 3D feature extraction, matching, and fusion algorithms. These 3D imaging methods and their applications are given as follows: - Single view imaging with line structured-light: 3D ear identification - Single view imaging with multi-line structured-light: 3D palmprint authentication - Single view imaging using only 3D camera: 3D hand verification - Multi-view imaging: 3D fingerprint recognition 3D Biometrics: Systems and Applications is a comprehensive introduction to both theoretical issues and practical implementation in 3D biometric authentication. It will serve as a textbook or as a useful reference for graduate students and researchers in the fields of computer science, electrical engineering, systems science, and information technology. Researchers and practitioners in industry and R&D laboratories working on security system design, biometrics, immigration, law enforcement, control, and pattern recognition will also find much of interest in this book.