Topics in Banach Space Theory

Author: Fernando Albiac
Publisher: Springer
ISBN: 9783319315577
Release Date: 2016-08-20
Genre: Mathematics

This text provides the reader with the necessary technical tools and background to reach the frontiers of research without the introduction of too many extraneous concepts. Detailed and accessible proofs are included, as are a variety of exercises and problems. The two new chapters in this second edition are devoted to two topics of much current interest amongst functional analysts: Greedy approximation with respect to bases in Banach spaces and nonlinear geometry of Banach spaces. This new material is intended to present these two directions of research for their intrinsic importance within Banach space theory, and to motivate graduate students interested in learning more about them. This textbook assumes only a basic knowledge of functional analysis, giving the reader a self-contained overview of the ideas and techniques in the development of modern Banach space theory. Special emphasis is placed on the study of the classical Lebesgue spaces Lp (and their sequence space analogues) and spaces of continuous functions. The authors also stress the use of bases and basic sequences techniques as a tool for understanding the isomorphic structure of Banach spaces. /div From the reviews of the First Edition: "The authors of the book...succeeded admirably in creating a very helpful text, which contains essential topics with optimal proofs, while being reader friendly... It is also written in a lively manner, and its involved mathematical proofs are elucidated and illustrated by motivations, explanations and occasional historical comments... I strongly recommend to every graduate student who wants to get acquainted with this exciting part of functional analysis the instructive and pleasant reading of this book..."—Gilles Godefroy, Mathematical Reviews

Lineare Operatoren in Hilbertr umen

Author: Joachim Weidmann
Publisher: Springer-Verlag
ISBN: 3322800946
Release Date: 2013-03-08
Genre: Mathematics

Behandelt werden die Grundlagen der Theorie zum Thema Lineare Operatoren in Hilberträumen, wie sie üblicherweise in Standardvorlesungen für Mathematiker und Physiker vorgestellt werden.

An Introduction to Banach Space Theory

Author: Robert E. Megginson
Publisher: Springer Science & Business Media
ISBN: 9781461206033
Release Date: 2012-12-06
Genre: Mathematics

Preparing students for further study of both the classical works and current research, this is an accessible text for students who have had a course in real and complex analysis and understand the basic properties of L p spaces. It is sprinkled liberally with examples, historical notes, citations, and original sources, and over 450 exercises provide practice in the use of the results developed in the text through supplementary examples and counterexamples.

A Short Course on Banach Space Theory

Author: N. L. Carothers
Publisher: Cambridge University Press
ISBN: 0521603722
Release Date: 2005
Genre: Mathematics

This is a short course on Banach space theory with special emphasis on certain aspects of the classical theory. In particular, the course focuses on three major topics: the elementary theory of Schauder bases, an introduction to Lp spaces, and an introduction to C(K) spaces. While these topics can be traced back to Banach himself, our primary interest is in the postwar renaissance of Banach space theory brought about by James, Lindenstrauss, Mazur, Namioka, Pelczynski, and others. Their elegant and insightful results are useful in many contemporary research endeavors and deserve greater publicity. By way of prerequisites, the reader will need an elementary understanding of functional analysis and at least a passing familiarity with abstract measure theory. An introductory course in topology would also be helpful; however, the text includes a brief appendix on the topology needed for the course.

Banach Space Theory

Author: Marián Fabian
Publisher: Springer Science & Business Media
ISBN: 1441975152
Release Date: 2011-02-04
Genre: Mathematics

Banach spaces provide a framework for linear and nonlinear functional analysis, operator theory, abstract analysis, probability, optimization and other branches of mathematics. This book introduces the reader to linear functional analysis and to related parts of infinite-dimensional Banach space theory. Key Features: - Develops classical theory, including weak topologies, locally convex space, Schauder bases and compact operator theory - Covers Radon-Nikodým property, finite-dimensional spaces and local theory on tensor products - Contains sections on uniform homeomorphisms and non-linear theory, Rosenthal's L1 theorem, fixed points, and more - Includes information about further topics and directions of research and some open problems at the end of each chapter - Provides numerous exercises for practice The text is suitable for graduate courses or for independent study. Prerequisites include basic courses in calculus and linear. Researchers in functional analysis will also benefit for this book as it can serve as a reference book.

Ma und Kategorie

Author: J.C. Oxtoby
Publisher: Springer-Verlag
ISBN: 9783642960741
Release Date: 2013-03-08
Genre: Mathematics

Dieses Buch behandelt hauptsächlich zwei Themenkreise: Der Bairesche Kategorie-Satz als Hilfsmittel für Existenzbeweise sowie Die "Dualität" zwischen Maß und Kategorie. Die Kategorie-Methode wird durch viele typische Anwendungen erläutert; die Analogie, die zwischen Maß und Kategorie besteht, wird nach den verschiedensten Richtungen hin genauer untersucht. Hierzu findet der Leser eine kurze Einführung in die Grundlagen der metrischen Topologie; außerdem werden grundlegende Eigenschaften des Lebesgue schen Maßes hergeleitet. Es zeigt sich, daß die Lebesguesche Integrationstheorie für unsere Zwecke nicht erforderlich ist, sondern daß das Riemannsche Integral ausreicht. Weiter werden einige Begriffe aus der allgemeinen Maßtheorie und Topologie eingeführt; dies geschieht jedoch nicht nur der größeren Allgemeinheit wegen. Es erübrigt sich fast zu erwähnen, daß sich die Bezeichnung "Kategorie" stets auf "Bairesche Kategorie" be zieht; sie hat nichts zu tun mit dem in der homologischen Algebra verwendeten Begriff der Kategorie. Beim Leser werden lediglich grundlegende Kenntnisse aus der Analysis und eine gewisse Vertrautheit mit der Mengenlehre vorausgesetzt. Für die hier untersuchten Probleme bietet sich in natürlicher Weise die mengentheoretische Formulierung an. Das vorlie gende Buch ist als Einführung in dieses Gebiet der Analysis gedacht. Man könnte es als Ergänzung zur üblichen Grundvorlesung über reelle Analysis, als Grundlage für ein Se minar oder auch zum selbständigen Studium verwenden. Bei diesem Buch handelt es sich vorwiegend um eine zusammenfassende Darstellung; jedoch finden sich in ihm auch einige Verfeinerungen bekannter Resultate, namentlich Satz 15.6 und Aussage 20.4. Das Literaturverzeichnis erhebt keinen Anspruch auf Vollständigkeit. Häufig werden Werke zitiert, die weitere Literaturangaben enthalten.

Banach Spaces of Continuous Functions as Dual Spaces

Author: H. G. Dales
Publisher: Springer
ISBN: 9783319323497
Release Date: 2016-12-13
Genre: Mathematics

This book gives a coherent account of the theory of Banach spaces and Banach lattices, using the spaces C_0(K) of continuous functions on a locally compact space K as the main example. The study of C_0(K) has been an important area of functional analysis for many years. It gives several new constructions, some involving Boolean rings, of this space as well as many results on the Stonean space of Boolean rings. The book also discusses when Banach spaces of continuous functions are dual spaces and when they are bidual spaces.

Lineare Funktionalanalysis

Author: Hans Wilhelm Alt
Publisher: Springer-Verlag
ISBN: 9783642222610
Release Date: 2012-04-17
Genre: Mathematics

Die lineare Funktionalanalysis ist ein Teilgebiet der Mathematik, das Algebra mit Topologie und Analysis verbindet. Das Buch führt in das Fachgebiet ein, dabei bezieht es sich auf Anwendungen in Mathematik und Physik. Neben den vollständigen Beweisen aller mathematischen Sätze enthält der Band zahlreiche Aufgaben, meist mit Lösungen. Für die Neuauflage wurden die Inhalte komplett überarbeitet. Das Standardwerk auf dem Gebiet der Funktionalanalysis richtet sich insbesondere an Leser mit Interesse an Anwendungen auf Differentialgleichungen.


Author: Michael Artin
Publisher: Birkhäuser
ISBN: 3764359382
Release Date: 1998-05-19
Genre: Mathematics

Locally Convex Spaces

Author: M. Scott Osborne
Publisher: Springer Science & Business Media
ISBN: 9783319020457
Release Date: 2013-11-08
Genre: Mathematics

For most practicing analysts who use functional analysis, the restriction to Banach spaces seen in most real analysis graduate texts is not enough for their research. This graduate text, while focusing on locally convex topological vector spaces, is intended to cover most of the general theory needed for application to other areas of analysis. Normed vector spaces, Banach spaces, and Hilbert spaces are all examples of classes of locally convex spaces, which is why this is an important topic in functional analysis. While this graduate text focuses on what is needed for applications, it also shows the beauty of the subject and motivates the reader with exercises of varying difficulty. Key topics covered include point set topology, topological vector spaces, the Hahn–Banach theorem, seminorms and Fréchet spaces, uniform boundedness, and dual spaces. The prerequisite for this text is the Banach space theory typically taught in a beginning graduate real analysis course.

Grundkurs Funktionalanalysis

Author: Winfried Kaballo
Publisher: Springer-Verlag
ISBN: 9783662547489
Release Date: 2018-01-19
Genre: Mathematics

In diesem Buch finden Sie die Grundlagen der Funktionalanalysis, die im ersten Drittel des 20. Jahrhunderts entwickelt wurden. Ausgehend von konkreten Fragen der Analysis lernen Sie Methoden zur Untersuchung linearer Operatoren zwischen Hilberträumen und Banachräumen kennen und wenden diese auf Fourier-Reihen, lineare Integral- und Differentialgleichungen und in der Quantenmechanik an. Das Buch eignet sich hervorragend als Begleitlektüre zu einer einführenden Vorlesung über Funktionalanalysis und auch zum Selbststudium.. Es ist sehr ausführlich und leicht verständlich geschrieben, die Konzepte und Resultate werden durch zahlreiche Beispiele und Abbildungen illustriert. Anhand vieler Übungsaufgaben können Sie Ihr Verständnis des Stoffes testen, anhand anderer diesen selbstständig weiterentwickeln. Lösungen finden Sie auf der Webseite zum Buch zum Buch unter An Vorkenntnissen benötigen Sie nur "Analysis I", Grundlagen der Linearen Algebra und der Topologie metrischer Räume sowie Vertrautheit mit Lebesgue-Integralen. Bei Bedarf können Sie viele dieser Vorkenntnisse mittels des ausführlichen Anhangs auffrischen.

A Course in Functional Analysis

Author: John B. Conway
Publisher: Springer Science & Business Media
ISBN: 9781475738285
Release Date: 2013-04-17
Genre: Mathematics

Functional analysis has become a sufficiently large area of mathematics that it is possible to find two research mathematicians, both of whom call themselves functional analysts, who have great difficulty understanding the work of the other. The common thread is the existence of a linear space with a topology or two (or more). Here the paths diverge in the choice of how that topology is defined and in whether to study the geometry of the linear space, or the linear operators on the space, or both. In this book I have tried to follow the common thread rather than any special topic. I have included some topics that a few years ago might have been thought of as specialized but which impress me as interesting and basic. Near the end of this work I gave into my natural temptation and included some operator theory that, though basic for operator theory, might be considered specialized by some functional analysts.

History of Banach Spaces and Linear Operators

Author: Albrecht Pietsch
Publisher: Springer Science & Business Media
ISBN: 0817645969
Release Date: 2007-12-31
Genre: Mathematics

Written by a distinguished specialist in functional analysis, this book presents a comprehensive treatment of the history of Banach spaces and (abstract bounded) linear operators. Banach space theory is presented as a part of a broad mathematics context, using tools from such areas as set theory, topology, algebra, combinatorics, probability theory, logic, etc. Equal emphasis is given to both spaces and operators. The book may serve as a reference for researchers and as an introduction for graduate students who want to learn Banach space theory with some historical flavor.