Vertical 3D Memory Technologies

Author: Betty Prince
Publisher: John Wiley & Sons
ISBN: 9781118760468
Release Date: 2014-08-13
Genre: Technology & Engineering

The large scale integration and planar scaling of individual system chips is reaching an expensive limit. If individual chips now, and later terrabyte memory blocks, memory macros, and processing cores, can be tightly linked in optimally designed and processed small footprint vertical stacks, then performance can be increased, power reduced and cost contained. This book reviews for the electronics industry engineer, professional and student the critical areas of development for 3D vertical memory chips including: gate-all-around and junction-less nanowire memories, stacked thin film and double gate memories, terrabit vertical channel and vertical gate stacked NAND flash, large scale stacking of Resistance RAM cross-point arrays, and 2.5D/3D stacking of memory and processor chips with through-silicon-via connections now and remote links later. Key features: Presents a review of the status and trends in 3-dimensional vertical memory chip technologies. Extensively reviews advanced vertical memory chip technology and development Explores technology process routes and 3D chip integration in a single reference

3D Flash Memories

Author: Rino Micheloni
Publisher: Springer
ISBN: 9789401775120
Release Date: 2016-05-26
Genre: Computers

This book walks the reader through the next step in the evolution of NAND flash memory technology, namely the development of 3D flash memories, in which multiple layers of memory cells are grown within the same piece of silicon. It describes their working principles, device architectures, fabrication techniques and practical implementations, and highlights why 3D flash is a brand new technology. After reviewing market trends for both NAND and solid state drives (SSDs), the book digs into the details of the flash memory cell itself, covering both floating gate and emerging charge trap technologies. There is a plethora of different materials and vertical integration schemes out there. New memory cells, new materials, new architectures (3D Stacked, BiCS and P-BiCS, 3D FG, 3D VG, 3D advanced architectures); basically, each NAND manufacturer has its own solution. Chapter 3 to chapter 7 offer a broad overview of how 3D can materialize. The 3D wave is impacting emerging memories as well and chapter 8 covers 3D RRAM (resistive RAM) crosspoint arrays. Visualizing 3D structures can be a challenge for the human brain: this is way all these chapters contain a lot of bird’s-eye views and cross sections along the 3 axes. The second part of the book is devoted to other important aspects, such as advanced packaging technology (i.e. TSV in chapter 9) and error correction codes, which have been leveraged to improve flash reliability for decades. Chapter 10 describes the evolution from legacy BCH to the most recent LDPC codes, while chapter 11 deals with some of the most recent advancements in the ECC field. Last but not least, chapter 12 looks at 3D flash memories from a system perspective. Is 14nm the last step for planar cells? Can 100 layers be integrated within the same piece of silicon? Is 4 bit/cell possible with 3D? Will 3D be reliable enough for enterprise and datacenter applications? These are some of the questions that this book helps answering by providing insights into 3D flash memory design, process technology and applications.

Emerging Memory Technologies

Author: Yuan Xie
Publisher: Springer Science & Business Media
ISBN: 9781441995513
Release Date: 2013-10-21
Genre: Technology & Engineering

This book explores the design implications of emerging, non-volatile memory (NVM) technologies on future computer memory hierarchy architecture designs. Since NVM technologies combine the speed of SRAM, the density of DRAM, and the non-volatility of Flash memory, they are very attractive as the basis for future universal memories. This book provides a holistic perspective on the topic, covering modeling, design, architecture and applications. The practical information included in this book will enable designers to exploit emerging memory technologies to improve significantly the performance/power/reliability of future, mainstream integrated circuits.

Nonvolatile Memory Technologies with Emphasis on Flash

Author: Joe Brewer
Publisher: John Wiley & Sons
ISBN: 9781118211625
Release Date: 2011-09-23
Genre: Technology & Engineering

Presented here is an all-inclusive treatment of Flash technology, including Flash memory chips, Flash embedded in logic, binary cell Flash, and multilevel cell Flash. The book begins with a tutorial of elementary concepts to orient readers who are less familiar with the subject. Next, it covers all aspects and variations of Flash technology at a mature engineering level: basic device structures, principles of operation, related process technologies, circuit design, overall design tradeoffs, device testing, reliability, and applications.

Advances in Non volatile Memory and Storage Technology

Author: Yoshio Nishi
Publisher: Elsevier
ISBN: 9780857098092
Release Date: 2014-06-24
Genre: Computers

New solutions are needed for future scaling down of nonvolatile memory. Advances in Non-volatile Memory and Storage Technology provides an overview of developing technologies and explores their strengths and weaknesses. After an overview of the current market, part one introduces improvements in flash technologies, including developments in 3D NAND flash technologies and flash memory for ultra-high density storage devices. Part two looks at the advantages of designing phase change memory and resistive random access memory technologies. It looks in particular at the fabrication, properties, and performance of nanowire phase change memory technologies. Later chapters also consider modeling of both metal oxide and resistive random access memory switching mechanisms, as well as conductive bridge random access memory technologies. Finally, part three looks to the future of alternative technologies. The areas covered include molecular, polymer, and hybrid organic memory devices, and a variety of random access memory devices such as nano-electromechanical, ferroelectric, and spin-transfer-torque magnetoresistive devices. Advances in Non-volatile Memory and Storage Technology is a key resource for postgraduate students and academic researchers in physics, materials science, and electrical engineering. It is a valuable tool for research and development managers concerned with electronics, semiconductors, nanotechnology, solid-state memories, magnetic materials, organic materials, and portable electronic devices. Provides an overview of developing nonvolatile memory and storage technologies and explores their strengths and weaknesses Examines improvements to flash technology, charge trapping, and resistive random access memory Discusses emerging devices such as those based on polymer and molecular electronics, and nanoelectromechanical random access memory (RAM)

NAND Flash Memory Technologies

Author: Seiichi Aritome
Publisher: John Wiley & Sons
ISBN: 9781119132622
Release Date: 2015-12-01
Genre: Technology & Engineering

Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience

Inside Solid State Drives SSDs

Author: Rino Micheloni
Publisher: Springer Science & Business Media
ISBN: 9789400751453
Release Date: 2012-10-15
Genre: Science

Solid State Drives (SSDs) are gaining momentum in enterprise and client applications, replacing Hard Disk Drives (HDDs) by offering higher performance and lower power. In the enterprise, developers of data center server and storage systems have seen CPU performance growing exponentially for the past two decades, while HDD performance has improved linearly for the same period. Additionally, multi-core CPU designs and virtualization have increased randomness of storage I/Os. These trends have shifted performance bottlenecks to enterprise storage systems. Business critical applications such as online transaction processing, financial data processing and database mining are increasingly limited by storage performance. In client applications, small mobile platforms are leaving little room for batteries while demanding long life out of them. Therefore, reducing both idle and active power consumption has become critical. Additionally, client storage systems are in need of significant performance improvement as well as supporting small robust form factors. Ultimately, client systems are optimizing for best performance/power ratio as well as performance/cost ratio. SSDs promise to address both enterprise and client storage requirements by drastically improving performance while at the same time reducing power. Inside Solid State Drives walks the reader through all the main topics related to SSDs: from NAND Flash to memory controller (hardware and software), from I/O interfaces (PCIe/SAS/SATA) to reliability, from error correction codes (BCH and LDPC) to encryption, from Flash signal processing to hybrid storage. We hope you enjoy this tour inside Solid State Drives.

High Bandwidth Memory Interface

Author: Chulwoo Kim
Publisher: Springer Science & Business Media
ISBN: 9783319023816
Release Date: 2013-10-27
Genre: Technology & Engineering

This book provides an overview of recent advances in memory interface design at both the architecture and circuit levels. Coverage includes signal integrity and testing, TSV interface, high-speed serial interface including equalization, ODT, pre-emphasis, wide I/O interface including crosstalk, skew cancellation, and clock generation and distribution. Trends for further bandwidth enhancement are also covered.

NAND Flash Memory Technologies

Author: Seiichi Aritome
Publisher: John Wiley & Sons
ISBN: 9781119132622
Release Date: 2015-12-01
Genre: Technology & Engineering

Offers a comprehensive overview of NAND flash memories, with insights into NAND history, technology, challenges, evolutions, and perspectives Describes new program disturb issues, data retention, power consumption, and possible solutions for the challenges of 3D NAND flash memory Written by an authority in NAND flash memory technology, with over 25 years’ experience

Wafer Level 3 D ICs Process Technology

Author: Chuan Seng Tan
Publisher: Springer Science & Business Media
ISBN: 0387765344
Release Date: 2009-06-29
Genre: Technology & Engineering

This book focuses on foundry-based process technology that enables the fabrication of 3-D ICs. The core of the book discusses the technology platform for pre-packaging wafer lever 3-D ICs. However, this book does not include a detailed discussion of 3-D ICs design and 3-D packaging. This is an edited book based on chapters contributed by various experts in the field of wafer-level 3-D ICs process technology. They are from academia, research labs and industry.

Silicon Based Unified Memory Devices and Technology

Author: Arup Bhattacharyya
Publisher: CRC Press
ISBN: 9781351798310
Release Date: 2017-07-06
Genre: Technology & Engineering

The primary focus of this book is on basic device concepts, memory cell design, and process technology integration. The first part provides in-depth coverage of conventional nonvolatile memory devices, stack structures from device physics, historical perspectives, and identifies limitations of conventional devices. The second part reviews advances made in reducing and/or eliminating existing limitations of NVM device parameters from the standpoint of device scalability, application extendibility, and reliability. The final part proposes multiple options of silicon based unified (nonvolatile) memory cell concepts and stack designs (SUMs). The book provides Industrial R&D personnel with the knowledge to drive the future memory technology with the established silicon FET-based establishments of their own. It explores application potentials of memory in areas such as robotics, avionics, health-industry, space vehicles, space sciences, bio-imaging, genetics etc.

Emerging Nanoelectronic Devices

Author: An Chen
Publisher: John Wiley & Sons
ISBN: 9781118447741
Release Date: 2015-01-27
Genre: Technology & Engineering

Emerging Nanoelectronic Devices focuses on the future direction of semiconductor and emerging nanoscale device technology. As the dimensional scaling of CMOS approaches its limits, alternate information processing devices and microarchitectures are being explored to sustain increasing functionality at decreasing cost into the indefinite future. This is driving new paradigms of information processing enabled by innovative new devices, circuits, and architectures, necessary to support an increasingly interconnected world through a rapidly evolving internet. This original title provides a fresh perspective on emerging research devices in 26 up to date chapters written by the leading researchers in their respective areas. It supplements and extends the work performed by the Emerging Research Devices working group of the International Technology Roadmap for Semiconductors (ITRS). Key features: Serves as an authoritative tutorial on innovative devices and architectures that populate the dynamic world of “Beyond CMOS” technologies. Provides a realistic assessment of the strengths, weaknesses and key unknowns associated with each technology. Suggests guidelines for the directions of future development of each technology. Emphasizes physical concepts over mathematical development. Provides an essential resource for students, researchers and practicing engineers.

Die stacking Architecture

Author: Yuan Xie
Publisher: Morgan & Claypool Publishers
ISBN: 9781627057660
Release Date: 2015-06-01
Genre: Computers

The emerging three-dimensional (3D) chip architectures, with their intrinsic capability of reducing the wire length, promise attractive solutions to reduce the delay of interconnects in future microprocessors. 3D memory stacking enables much higher memory bandwidth for future chip-multiprocessor design, mitigating the "memory wall" problem. In addition, heterogenous integration enabled by 3D technology can also result in innovative designs for future microprocessors. This book first provides a brief introduction to this emerging technology, and then presents a variety of approaches to designing future 3D microprocessor systems, by leveraging the benefits of low latency, high bandwidth, and heterogeneous integration capability which are offered by 3D technology.