Visualizing Data

Author: Ben Fry
Publisher: "O'Reilly Media, Inc."
ISBN: 0596554729
Release Date: 2007-12-18
Genre: Computers

Enormous quantities of data go unused or underused today, simply because people can't visualize the quantities and relationships in it. Using a downloadable programming environment developed by the author, Visualizing Data demonstrates methods for representing data accurately on the Web and elsewhere, complete with user interaction, animation, and more. How do the 3.1 billion A, C, G and T letters of the human genome compare to those of a chimp or a mouse? What do the paths that millions of visitors take through a web site look like? With Visualizing Data, you learn how to answer complex questions like these with thoroughly interactive displays. We're not talking about cookie-cutter charts and graphs. This book teaches you how to design entire interfaces around large, complex data sets with the help of a powerful new design and prototyping tool called "Processing". Used by many researchers and companies to convey specific data in a clear and understandable manner, the Processing beta is available free. With this tool and Visualizing Data as a guide, you'll learn basic visualization principles, how to choose the right kind of display for your purposes, and how to provide interactive features that will bring users to your site over and over. This book teaches you: The seven stages of visualizing data -- acquire, parse, filter, mine, represent, refine, and interact How all data problems begin with a question and end with a narrative construct that provides a clear answer without extraneous details Several example projects with the code to make them work Positive and negative points of each representation discussed. The focus is on customization so that each one best suits what you want to convey about your data set The book does not provide ready-made "visualizations" that can be plugged into any data set. Instead, with chapters divided by types of data rather than types of display, you'll learn how each visualization conveys the unique properties of the data it represents -- why the data was collected, what's interesting about it, and what stories it can tell. Visualizing Data teaches you how to answer questions, not simply display information.

Visualizing Data Patterns with Micromaps

Author: Daniel B. Carr
Publisher: CRC Press
ISBN: 1420075748
Release Date: 2010-04-29
Genre: Mathematics

After more than 15 years of development drawing on research in cognitive psychology, statistical graphics, computer science, and cartography, micromap designs are becoming part of mainstream statistical visualizations. Bringing together the research of two leaders in this field, Visualizing Data Patterns with Micromaps presents the many design variations and applications of micromaps, which link statistical information to an organized set of small maps. This full-color book helps readers simultaneously explore the statistical and geographic patterns in their data. After illustrating the three main types of micromaps, the authors summarize the research behind the design of visualization tools that support exploration and communication of spatial data patterns. They then explain how these research findings can be applied to micromap designs in general and detail the specifics involved with linked, conditioned, and comparative micromap designs. To compare and contrast their purposes, limitations, and strengths, the final chapter applies all three of these techniques to the same demographic data for Louisiana before and after Hurricanes Katrina and Rita. Supplementary website Offering numerous ancillary features, the book’s website at http://mason.gmu.edu/~dcarr/Micromaps/ provides many boundary files and real data sets that address topics, such species biodiversity and alcoholism. One complete folder of data examples presents cancer statistics, risk factors, and demographic data. The site includes CCmaps, the dynamic implementation of conditioned micromaps written in Java, as well as a link to a generalized micromaps program. It also contains R functions and scripts for linked and comparative micromaps, enabling re-creation of all the corresponding examples in the book.

R Graphics Cookbook

Author: Winston Chang
Publisher: "O'Reilly Media, Inc."
ISBN: 9781449363116
Release Date: 2012-12-06
Genre: Computers

This practical guide provides more than 150 recipes to help you generate high-quality graphs quickly, without having to comb through all the details of R’s graphing systems. Each recipe tackles a specific problem with a solution you can apply to your own project, and includes a discussion of how and why the recipe works. Most of the recipes use the ggplot2 package, a powerful and flexible way to make graphs in R. If you have a basic understanding of the R language, you’re ready to get started. Use R’s default graphics for quick exploration of data Create a variety of bar graphs, line graphs, and scatter plots Summarize data distributions with histograms, density curves, box plots, and other examples Provide annotations to help viewers interpret data Control the overall appearance of graphics Render data groups alongside each other for easy comparison Use colors in plots Create network graphs, heat maps, and 3D scatter plots Structure data for graphing

Visualizing Data with Microsoft Power View SET 2

Author: Brian Larson
Publisher: McGraw Hill Professional
ISBN: 9780071780834
Release Date: 2012-05-06
Genre: Computers

Reveals how to build rich BI reports with just a few clicks using Crescent, Microsoft’s newest BI tool Technical review by Microsoft’s Crescent team and Foreword by Group Program Manager for Crescent Complete, practical examples are immediately usable to readers in a commercial environment CD-ROM contains 30+ reusable reports, all code samples, and supporting animations that walk thru each example

Visualize This

Author: Nathan Yau
Publisher: John Wiley & Sons
ISBN: 9781118140260
Release Date: 2011-06-13
Genre: Computers

Practical data design tips from a data visualization expert of the modern age Data doesn?t decrease; it is ever-increasing and can be overwhelming to organize in a way that makes sense to its intended audience. Wouldn?t it be wonderful if we could actually visualize data in such a way that we could maximize its potential and tell a story in a clear, concise manner? Thanks to the creative genius of Nathan Yau, we can. With this full-color book, data visualization guru and author Nathan Yau uses step-by-step tutorials to show you how to visualize and tell stories with data. He explains how to gather, parse, and format data and then design high quality graphics that help you explore and present patterns, outliers, and relationships. Presents a unique approach to visualizing and telling stories with data, from a data visualization expert and the creator of flowingdata.com, Nathan Yau Offers step-by-step tutorials and practical design tips for creating statistical graphics, geographical maps, and information design to find meaning in the numbers Details tools that can be used to visualize data-native graphics for the Web, such as ActionScript, Flash libraries, PHP, and JavaScript and tools to design graphics for print, such as R and Illustrator Contains numerous examples and descriptions of patterns and outliers and explains how to show them Visualize This demonstrates how to explain data visually so that you can present your information in a way that is easy to understand and appealing.

Visual Intelligence

Author: Mark Stacey
Publisher: John Wiley & Sons
ISBN: 9781118417522
Release Date: 2013-04-10
Genre: Computers

Go beyond design concepts and learn to build state-of-the-art visualizations The visualization experts at Microsoft's Pragmatic Works have created a full-color, step-by-step guide to building specific types of visualizations. The book thoroughly covers the Microsoft toolset for data analysis and visualization, including Excel, and explores best practices for choosing a data visualization design, selecting tools from the Microsoft stack, and building a dynamic data visualization from start to finish. You'll examine different types of visualizations, their strengths and weaknesses, and when to use each one. Data visualization tools unlock the stories within the data, enabling you to present it in a way that is useful for making business decisions This full-color guide introduces data visualization design concepts, then explains the various Microsoft tools used to store and display data Features a detailed discussion of various classes of visualizations, their uses, and the appropriate tools for each Includes practical implementations of various visualizations and best practices for using them Covers out-of-the-box Microsoft tools, custom-developed illustrations and implementations, and code examples Visual Intelligence: Microsoft Tools and Techniques for Visualizing Data arms you with best practices and the knowledge to choose and build dynamic data visualizations.

Design for Six Sigma Statistics Chapter 2 Visualizing Data

Author: Andrew Sleeper
Publisher: McGraw Hill Professional
ISBN: 9780071735643
Release Date: 2005-12-05
Genre: Business & Economics

Here is a chapter from Design for Six Sigma Statistics, written by a Six Sigma practitioner with more than two decades of DFSS experience who provides a detailed, goal-focused roadmap. It shows you how to execute advanced mathematical procedures specifically aimed at implementing, fine-tuning, or maximizing DFSS projects to yield optimal results. For virtually every instance and situation, you are shown how to select and use appropriate mathematical methods to meet the challenges of today's engineering design for quality.

Data Visualization

Author: Lauren Magnuson
Publisher: Rowman & Littlefield
ISBN: 9781442271128
Release Date: 2016-09-15
Genre: Language Arts & Disciplines

Data Visualization: A Guide to Visual Storytelling for Libraries is a practical guide to the skills and tools needed to create beautiful and meaningful visual stories through data visualization. Learn how to sift through complex datasets to better understand a variety of metrics, such as trends in user behavior and electronic resource usage, return on investment (ROI) and impact metrics, and data about library collections and repositories. Sections include: ·Identifying and interpreting datasets for visualization ·Tools and technologies for creating meaningful visualizations ·Case studies in data visualization and dashboards Data Visualization also features a 20-page color insert showcasing a wide variety of visualizations generated using an array of data visualization technologies and programming languages that can serve as inspiration for creating your own visualizations. Understanding and communicating trends from your organization’s data is essential. Whether you are looking to make more informed decisions by visualizing organizational data, or to tell the story of your library’s impact on your community, this book will give you the tools to make it happen.

Pro Data Visualization Using R and JavaScript

Author: Tom Barker
Publisher: Apress
ISBN: 9781430258063
Release Date: 2013-06-17
Genre: Computers

Pro Data Visualization using R and JavaScript makes the R language approachable, and promotes the idea of data gathering and analysis. You'll see how to use R to interrogate and analyze your data, and then use the D3 JavaScript library to format and display that data in an elegant, informative, and interactive way. You will learn how to gather data effectively, and also how to understand the philosophy and implementation of each type of chart, so as to be able to represent the results visually. With the popularity of the R language, the art and practice of creating data visualizations is no longer the preserve of mathematicians, statisticians, or cartographers. As technology leaders, we can gather metrics around what we do and use data visualizations to communicate that information. Pro Data Visualization using R and JavaScript combines the power of the R language with the simplicity and familiarity of JavaScript to display clear and informative data visualizations. Gathering and analyzing empirical data is the key to truly understanding anything. We can track operational metrics to quantify the health of our products in production. We can track quality metrics of our projects, and even use our data to identify bad code. Visualizing this data allows anyone to read our analysis and easily get a deep understanding of the story the data tells. What you’ll learn A rich understanding of how to gather, and analyze empirical data How to tell a story with data using data visualizations What types of data visualizations are best to use for the story that you want to tell with your data A comprehensive introduction to the R language, covering all the essentials Exploration of how to construct interactive data visualizations using JavaScript and JavaScript libraries Who this book is for Developers at all levels interested in data visualization, beginning to intermediate engineering managers, statisticians, mathematicians, economists and any others interested in data visualization. Table of Contents Techniques for Data Visualization The R Language A Deeper Dive into R Data Visualization with D3 Visualizing Spatial Information from Access Logs (Data Maps) Visualizing Defects over Time (Time Series) Bar Charts Correlation Analysis with Team Dynamics (Scatterplot and Bubble Chart) Balancing Delivery with Quality (Parallel Coordinates Chart)

Data Visualization

Author: Frits H. Post
Publisher: Springer Science & Business Media
ISBN: 1402072597
Release Date: 2002-12-31
Genre: Computers

Data visualization is currently a very active and vital area of research, teaching and development. The term unites the established field of scientific visualization and the more recent field of information visualization. The success of data visualization is due to the soundness of the basic idea behind it: the use of computer-generated images to gain insight and knowledge from data and its inherent patterns and relationships. A second premise is the utilization of the broad bandwidth of the human sensory system in steering and interpreting complex processes, and simulations involving data sets from diverse scientific disciplines and large collections of abstract data from many sources. These concepts are extremely important and have a profound and widespread impact on the methodology of computational science and engineering, as well as on management and administration. The interplay between various application areas and their specific problem solving visualization techniques is emphasized in this book. Reflecting the heterogeneous structure of Data Visualization, emphasis was placed on these topics: -Visualization Algorithms and Techniques; -Volume Visualization; -Information Visualization; -Multiresolution Techniques; -Interactive Data Exploration. Data Visualization: The State of the Art presents the state of the art in scientific and information visualization techniques by experts in this field. It can serve as an overview for the inquiring scientist, and as a basic foundation for developers. This edited volume contains chapters dedicated to surveys of specific topics, and a great deal of original work not previously published illustrated by examples from a wealth of applications. The book will also provide basic material for teaching the state of the art techniques in data visualization. Data Visualization: The State of the Art is designed to meet the needs of practitioners and researchers in scientific and information visualization. This book is also suitable as a secondary text for graduate level students in computer science and engineering.

Visualizing Data Structures

Author: Rhonda Hoenigman
Publisher: Lulu Press, Inc
ISBN: 9781329133020
Release Date: 2016-05-14
Genre: Computers

This book is intended for an introductory data structures class, either as a supplement to a traditional textbook or as a stand-alone resource. The intended audience is second-semester computer science students with knowledge of programming in C or C++. The focus is on fundamental concepts of data structures and algorithms and providing the necessary detail for students to implement the data structures presented. Basic data structures, including arrays, stacks, queues, linked lists, trees, binary search trees, tree balancing, hash tables, and graphs are presented, including the operations on those data structures. The algorithms are presented in a language that could be called “pseudocode with C++ tendencies.” In many cases, basic C++ is also provided. Sorting algorithms and an introduction to complexity analysis and Big-Oh notation are also included. Each chapter includes numerous pictures depicting the data structures and how the basic operations on the structures modify their contents.

Data Visualization with JavaScript

Author: Stephen A. Thomas
Publisher: No Starch Press
ISBN: 9781593276058
Release Date: 2015-03-23
Genre: Computers

You've got data to communicate. But what kind of visualization do you choose, how do you build it, and how do you ensure that it's up to the demands of the Web? In Data Visualization with JavaScript, you'll learn how to use JavaScript, HTML, and CSS to build the most practical visualizations for your data. Step-by-step examples walk you through creating, integrating, and debugging different types of visualizations and will have you building basic visualizations, like bar, line, and scatter graphs, in no time. Then you'll move on to more advanced topics, including how to: Create tree maps, heat maps, network graphs, word clouds, and timelines Map geographic data, and build sparklines and composite charts Add interactivity and retrieve data with AJAX Manage data in the browser and build data-driven web applications Harness the power of the Flotr2, Flot, Chronoline.js, D3.js, Underscore.js, and Backbone.js libraries If you already know your way around building a web page but aren't quite sure how to build a good visualization, Data Visualization with JavaScript will help you get your feet wet without throwing you into the deep end. Before you know it, you'll be well on your way to creating simple, powerful data visualizations.

Data Visualization Representing Information on Modern Web

Author: Andy Kirk
Publisher: Packt Publishing Ltd
ISBN: 9781787125070
Release Date: 2016-09-30
Genre: Computers

Unleash the power of data by creating interactive, engaging, and compelling visualizations for the web About This Book Get a portable, versatile, and flexible data visualization design approach that will help you navigate the complex path towards success Get thorough explanation of the many visual variables and visualization taxonomy to provide you with a menu of creative options A comprehensive and contemporary introduction to data-driven visualization design and the most effective approaches to designing impact-maximizing and cognition-amplifying visualizations Who This Book Is For This course is for developers who are excited about data and who want to share that excitement with others and it will be handy for the web developers or data scientists who want to create interactive visualizations for the web. Prior knowledge of developing web applications is required. You should have a working knowledge of both JavaScript and HTML. What You Will Learn Harness the power of D3 by building interactive and real-time data-driven web visualizations Find out how to use JavaScript to create compelling visualizations of social data Identify the purpose of your visualization and your project's parameters to determine overriding design considerations across your project's execution Apply critical thinking to visualization design and get intimate with your dataset to identify its potential visual characteristics Explore the various features of HTML5 to design creative visualizations Discover what data is available on Stack Overflow, Facebook, Twitter, and Google+ Gain a solid understanding of the common D3 development idioms Find out how to write basic D3 code for server using Node.js In Detail Do you want to create more attractive charts? Or do you have huge data sets and need to unearth the key insights in a visual manner? Data visualization is the representation and presentation of data, using proven design techniques to bring alive the patterns, stories, and key insights that are locked away. This learning path is divided into three modules. The first module will equip you with the key techniques required to overcome contemporary data visualization challenges. After getting familiar with key concepts of data visualization, it's time to incorporate it with various technologies. In the second module, Social Data Visualization with HTML5 and JavaScript, it teaches you how to leverage HTML5 techniques through JavaScript to build visualizations. It also clears up how the often complicated OAuth protocol works to help you unlock a universe of social media data from sites such as Twitter, Facebook, and Google+. Once you are familiar with the concepts of incorporating data visualization with HTML5 and JavaScript, third module, Learning d3.js Data Visualization, will lead you to D3, which has emerged as one of the leading platforms to develop beautiful, interactive visualizations over the web. This module provides a strong foundation in designing compelling web visualizations with D3.js. By the end of this course, you will have unlocked the mystery behind successful data visualizations. This Learning Path combines some of the best that Packt has to offer in one complete, curated package. It includes content from the following Packt products: Data Visualization: a successful design process by Andy Kirk Social Data Visualization with HTML5 and JavaScript by Simon Timms Learning d3.js Data Visualization, Second Edition by Ǯdrew Rininsland and Swizec Teller Style and approach This course includes all the resources that will help you jump into creating interactive and engaging visualizations for the web. Through this comprehensive course, you'll learn how to create engaging visualizations for the web to represent your data from start to finish!

Handbook of Data Visualization

Author: Chun-houh Chen
Publisher: Springer Science & Business Media
ISBN: 3540330372
Release Date: 2007-12-18
Genre: Computers

Visualizing the data is an essential part of any data analysis. Modern computing developments have led to big improvements in graphic capabilities and there are many new possibilities for data displays. This book gives an overview of modern data visualization methods, both in theory and practice. It details modern graphical tools such as mosaic plots, parallel coordinate plots, and linked views. Coverage also examines graphical methodology for particular areas of statistics, for example Bayesian analysis, genomic data and cluster analysis, as well software for graphics.